首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

2.
Piperazine spirocyclic phosphoramidate (PSP), a novel halogen‐free intumescent flame retardant, was synthesized and used to improve the flame retardancy and dripping resistance of polypropylene (PP) combined with ammonium polyphosphate (APP) and a triazine polymer charring‐foaming agent (CFA). The optimum flame‐retardant formulation was PSP:APP:CFA = 3:6:2 (weight ratio). The flammability and thermal behavior of the (intumescent flame‐retardant)‐PP (IFR‐PP) were investigated via limiting oxygen index (LOI), vertical burning tests (UL‐94), thermogravimetric analysis, and cone calorimetry (CONE). The results indicated that the IFR‐PP had both excellent flame retardancy and anti‐dripping ability. The optimum flame‐retardant formulation gave an LOI value of 39.8 and a UL‐94 V‐0 rating to PP. Moreover, both the heat release rate and the total heat release of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analyses. The residues of IFR‐PP obtained after CONE tests were observed by scanning electron microscopy, and it was found that the char yield was directly related to the flame retardancy and anti‐dripping behavior of the treated PP. J. VINYL ADDIT. TECHNOL., 20:10–15, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Tris(2‐hydroxyethyl) isocyanurate (THEIC) was used as charring agent and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) for polypropylene (PP). The flame retardancy and combustion performance of PP/IFR composite was tested by limiting oxygen index (LOI), UL‐94 vertical burning test and cone calorimeter. The results showed that PP/IFR composite had highest LOI of 34.8 and obtained V‐0 rating when 30 wt % IFR was loaded and mass ratio APP/THEIC was 2 : 1. The peak heat release (PHRR) and total heat release (THR) values of PP composite containing FRs were remarkably reduced compared with that of pure PP. However, water resistant test demonstrated the PP/IFR composite had poor flame retardant durability, both the LOI value and UL‐94 V‐rating decreased when PP/IFR composite was soaked in water at 70°C after 36 h. The degradation process and the char morphology of IFR and PP/IFR composite were investigated by TGA and SEM images. The possible reaction path between APP and THEIC in the swollen process was proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41214.  相似文献   

4.
A novel halogen‐free intumescent flame retardant, spirophosphoryldicyandiamide (SPDC), was synthesized and combined with ammonium polyphosphate (APP) to produce a compound intumescent flame retardant (IFR). This material was used in polypropylene (PP) to obtain IFR‐PP systems whose flammability and thermal behavior were studied by the limiting oxygen index (LOI) test, UL‐94, thermogravimetric analysis, and cone calorimetry. In addition, the mechanical properties of the systems were investigated. The results indicated that the compound intumescent flame retardant showed both excellent flame retardancy and antidripping ability for PP when the two main components of the IFR coexisted in appropriate proportions. The optimum flame retardant formulation was SPDC:APP = 3:1, which gave an LOI value of 38.5 and a UL‐94 V‐0 rating. Moreover, the heat release rate, production of CO, smoke production rate, and mass loss rate of the IFR‐PP with the optimum formulation decreased significantly relative to those of pure PP, according to the cone calorimeter analysis. The char residues from the cone calorimetry experiments were observed by scanning electron microscopy, which showed that a homogeneous and compact intumescent char layer was formed. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
A novel halogen‐free flame‐retardant composite consisting of an intumescent flame retardant (IFR), oil‐filled styrene–ethylene–butadiene–styrene block copolymer (O‐SEBS), and polypropylene (PP) was studied. On the basis of UL‐94 ratings and limiting oxygen index (LOI) data, the IFRs consisted of a charring–foaming agent, ammonium polyphosphate, and SiO2 showed very effective flame retardancy and good water resistance in the IFR O‐SEBS/PP composite. When the loading of IFR was only 28 wt %, the IFR–O‐SEBS/PP composite could still attain a UL‐94 V‐0 (1.6 mm) rating, and its LOI value remained at 29.8% after a water treatment at 70°C for 168 h. Thermogravimetric analysis data indicated that the IFR effectively enhanced the temperature of the main thermal degradation peak of the IFR–O‐SEBS/PP composites because of the formation of abundant char residue. The flammability parameters of the composites obtained from cone calorimetry testing demonstrated that water treatment almost did not affect the flammability behavior of the composite. The morphological structures of the char residue and fractured surfaces of the composites were not affected by the water treatment. This was attributed to a small quantity of IFR extracted from the composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39575.  相似文献   

6.
A novel halogen‐free intumescent flame retardant, pentaerythritol spirobisphosphoryl‐dicyandiamide (SPDC), was synthesized and characterized by FTIR, 1H NMR, and 31P NMR spectra. The new flame retardant was used in polypropylene (PP) to prepare flame‐retardant materials whose flammability and thermal behavior were studied by the limiting oxygen index (LOI) method, thermogravimetric analysis (TGA), and cone calorimetry (CONE). The mechanical properties were also investigated. The results indicated that when the addition of SPDC reached 30 wt%, the material showed both excellent flame retardancy and anti‐dripping abilities for PP. Moreover, the LOI value of the PP‐IFR(30%) was 32.5, and it passed the UL‐94 V‐0 rating test. The CONE results revealed that in PP, SPDC(30%) significantly decreased the peak heat release, total heat release, and smoke relative to their values for pure PP. The morphological structures observed by SEM demonstrated that SPDC could promote the formation of a homogeneous and compact intumescent char layer. The TGA data showed that SPDC could enhance the thermal stability of PP and effectively increase the char residue formation. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy, and char formation of an efficient halogen‐free flame‐retardant ethylene‐vinyl acetate copolymer composite (EVA/IFR) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test (CCT), digital photography, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), laser Raman spectroscopy (LRS) and thermogravimetric analytical (TGA) methods. It was found that a small amount of 4A clearly improved the LOI value of the EVA/IFR composite and reinforced the fire retardant performance with a great reduction in the combustion parameters of the EVA/IFR system from the CCT test. The entire composites passed the UL‐94 V‐0 rating test. The TGA and integral procedure decomposition temperature (IDPT) results showed that 4A enhanced the thermal stability of the EVA/IFR system and increased the char residue content effectively. The morphological structures observed by digital and SEM imaging revealed that 4A could promote EVA/IFR to form a more continuous and compact intumescent char layer. The LRS and EDS results demonstrated that by introduction of 4A into the EVA/IFR system, a more graphite structure was formed with increase phosphorus content in the char residue. POLYM. ENG. SCI., 56:380–387, 2016. © 2016 Society of Plastics Engineers  相似文献   

8.
以二乙醇胺为侧链,三聚氯氰和哌嗪为主链,采用一锅法制备了一种多羟基三嗪成炭剂(CDP),将其与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR)用于阻燃聚丙烯(PP)。采用垂直燃烧、极限氧指数、热失重分析等手段研究了阻燃PP的阻燃性能和热稳定性,并用扫描电子显微镜(SEM)对炭层形貌进行了研究。结果表明,APP和CDP具有良好的协同阻燃效果,当APP与CDP质量比为2∶1时,协同阻燃效果最优,仅添加20% IFR,即可使PP达到UL94 V–0级别,LOI为29.5%。热失重分析表明该复合材料在800℃具有最高的残炭量,SEM也显示形成了连续致密的炭层。  相似文献   

9.
Kaolinite (Kaol) and halloysite nanotubes (HNT) are both aluminosilicate clays with similar chemical formulation and different microshapes. In this article, nanotubular HNT and nanoplate Kaol together were introduced into polypropylene (PP) containing intumescent flame retardant (IFR). The flammability of the PP composites was characterized by limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimeter tests (CCT). The results showed that for the composite with 75 wt % PP and 25 wt % IFR, its LOI was 31.0% and it obtained a UL‐94 grade of V‐2. For the composite of 75 wt % PP, 23.5 wt % IFR, and 1.5 wt % (Kaol/HNT = 9/1), its LOI increased to 36.9 and it obtained a UL‐94 grade of V‐0; at the same time, its peak heat release rate value in CCT decreased by 82.2% compared to neat PP. The thermostability analysis indicated that the mixture of Kaol/HNT could improve the thermostability and final char yield. The char residues were comprehensively analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy. The results illustrated that the Kaol/HNT combination was beneficial to forming a crosslinked network and promoting formation of a compact char with higher strength. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46507.  相似文献   

10.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Mesoporous silica SBA‐15 synthesized from Pluronic P123 and tetraethoxysilane was used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame‐retardant (IFR) system. Limiting oxygen index (LOI), UL‐94 rating and thermogravimetric analysis were used to evaluate the synergistic effect of SBA‐15 on PP/IFR system. It showed that PP/IFR system could reach V‐0 with loading of SBA‐15 ranging from 0.5 to 3 wt%, while without SBA‐15 it had no rating at UL‐94 test. The LOI value increased from 25.5 to 32.2 when the loading of SBA‐15 was 1 wt%. The thermal stability of PP/IFR was improved in the presence of SBA‐15 and the amount of the char residue at 600° C was increased from 8.96 to 16.42 wt% when loading of SBA‐15 varied from 0.5 to 5 wt%. Laser Raman spectroscopy (LRS) and scanning electron microscopy were employed to study the morphology of the char residue of PP/IFR system with and without SBA‐15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The flame retardancy of low‐density polyethylene (LDPE) treated with complex flame retardant composed of ultrafine zinc borate (UZB) and intumescent flame retardant (IFR) have been investigated by limited oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), cone calorimeter test, scanning electron micrograph (SEM), energy‐dispersive spectrometer (EDS), and X‐ray diffraction (XRD). The results of LOI and UL‐94 test indicate the desired flame retardancy of LDPE is obtained when the mass ratio of UZB to IFR is 4.2 : 25.8 and the complex flame retardant mass content is 30% (based on LDPE). The results of cone calorimeter show that heat release rate (HRR) peak, total heat release (THR), and mass loss of LDPE/IFR/UZB decrease substantially when compared with those of LDPE/IFR. TGA results show that the residue of LDPE/IFR/UZB increases obviously than that of LDPE/IFR when the temperature is above 600°C. SEM indicates the quality of char forming of LDPE/IFR/UZB is superior to that of LDPE/IFR. The results of EDS and XRD indicate that boron orthophosphate (BPO4) and zinc‐contained compounds are formed in the residual char and these substances may play an important role in stabilizing the intumescent char structure and decrease the degradation speed substantially when subjected to high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3667–3674, 2007  相似文献   

13.
采用含磷钛酸酯偶联(剂PTCA)对由三聚氰胺焦磷酸(盐MPP)和季戊四(醇PER)复配组成的膨胀型阻燃(剂IFR)进行表面改性,并用其制备阻燃聚丙烯(PP)。研究了PTCA用量对PP/IFR共混物力学性能和阻燃性能的影响,并通过热重分析和扫描电镜对共混物进行了表征。结果表明:PTCA有效改善了IFR与PP基体的相容性,提高了PP/IFR共混物的力学性能及阻燃性能。当PTCA用量为1.0%时,共混物的拉伸强度和缺口冲击强度为27.3 MPa和3.2 kJ/m2,分别比未改性的PP/IFR提高了18.7%和6.7%;LOI从未改性PP/IFR的28.5%提高到31.5%,且通过UL94 V-0级;此外,共混物的热稳定性也明显提高,700℃时的残炭率由未改性PP/IFR的8.2%提高到12.1%。  相似文献   

14.
Amino trimethylene phosphonic acid melamine salt (MATMP) was synthesized and used as acid source and blowing agent in intumescent flame‐retarded polypropylene (PP); its compositions were characterized by Fourier transform infrared spectroscopy and X‐ray powder diffraction. An intumescent flame retardant (IFR) system composed of MATMP, pentaerythritol (PER), and PP was tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests, and thermogravimetric analysis and compared with an ammonium polyphosphate (APP)/PER system. The results showed that MATMP had better water resistance than APP, the LOI value of PP/MATMP/PER composite can reach 30.3%, and a UL‐94 V‐0 rating can be reached at 25 wt % IFR loading. The amount of residual char of IFR MATMP/PER was 20.3 and 9.5 wt % at 400 and 600 °C, respectively. A thermooxidative degradation route and a possible flame‐retardant mechanism of IFR were proposed according to the analysis of evolved gases and residual chars. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46274.  相似文献   

15.
A hyperbranched charring agent (CT) was synthesized by triglycidyl isocyanurate and diethylenetriamine in water, and a new intumescent flame retardant (IFR) system was formed by ammonium polyphosphate (APP) and CT. The different formula and synergistic system between IFR and aluminum hypophosphite (AHP) have been studied through limit oxygen index (LOI), UL‐94, cone calorimetry test and TGA. It was found that the LOI for poly(lactic acid) (PLA) with 30 APP/CT (4:1) and 20 wt % IFR/AHP (3:1) were 41.2% and 43.5%, respectively, and the both could achieve UL‐94V‐0 rating with no melt dripping. The heat release rate (HRR), maximum HRR value and average mass loss rate of PLA could be dramatically decreased by combination of IFR and AHP while the thermal stability was greatly enhanced. The study of morphology and structure of char illustrated that more intumescent and compact char layer with good intensity was formed during the degradation of IFR/AHP, which resulting to better flame retardancy and anti‐dripping than IFR or AHP alone. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46359.  相似文献   

16.
A novel halogen‐free charring agent bi(4‐methoxy‐1‐phospha‐2, 6, 7‐trioxabicyclo [2.2.2]‐octane‐1‐sulfide) phenylphosphate (BSPPO) was synthesized from phenylphosphonic dichloride (PPDC), and 4‐hydroxymethyl‐1‐phospha‐2, 6, 7‐trioxabicyclo[2.2.2]‐octane‐1‐sulfide (SPEPA) which was synthesized from pentaerythritol and thiophosphoryl chloride in this article. The structure of BSPPO and SPEPA was characterized by Fourier transform infrared (FTIR), 1H‐NMR, 13C‐NMR, and 31P‐NMR. Combined with ammonium polyphosphate (APP) and melamine pyrophosphate (MPP), the flame retardance and dripping resistance of BSPPO added in polypropylene (PP) were investigated. The fire performance of the flame retardant PP system was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), and cone calorimeter. The thermal stabilities of the composites were studied by thermogravimetric analysis (TGA). The flame retardance mechanism was investigated by FTIR and scanning electronic micrograph (SEM). The mechanical properties and water solubility were also investigated. The residue of BSPPO is 40.6% at 600°C, which indicates BSPPO has excellent charring ability. The char residue of the polypropylene intumescent flame retardant (PP‐IFR) system is 22% at 600°C, which suggests that the flame retardation synergy of APP, BSPPO, and MPP is good. With the optimum formulation, the LOI of the IFR‐PP system is 32.0, and the UL‐94 is V‐0 rating. The heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss rate (MLR) of IFR‐PP with the optimum formulation decrease significantly comparing to pure PP from cone calorimeter analysis. The FTIR and SEM results indicate that the char properties and the char yield have direct effect on the flame retardance and antidripping behaviors. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A macromolecular homopolymer (named as Homo‐THEIC) was synthesized through self‐etherification of tris(2‐hydroxyethyl) isocyanurate (THEIC) molecules and used as charring agent. Its chemical structure was characterized by FTIR and 13C‐NMR. The charring agent was mixed with ammonium polyphosphate (APP) and applied in flame retarded polypropylene (PP). Results of UL‐94, LOI, and cone calorimeter test showed that the LOI of flame retarded PP can reach 32.8% and UL‐94 V‐0 rating can be achieved at 30 wt % loading. The heat release rate and smoke production rate during the combustion of PP were substantially reduced. TGA results indicated that the synergistic effect between APP and Homo‐THEIC existed and the addition of intumescent flame retardant (IFR) dramatically enhanced the thermal stability of PP. According to the results of TGA, SEM, TG‐FTIR, FTIR, and Raman, the char forming process of IFR can be separated into three stages: the formation of viscous phosphate ester (T onset?330 °C), the expanding process along with the decomposition of phosphate ester and the release of a large amount of gases (330–480 °C), and the final formation of graphitic‐like char without any expanding feature (480–670 °C). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44663.  相似文献   

19.
The effect of percolation and catalysis of bamboo‐based active carbon (BAC) on the thermal degradation and flame retardancy of ethylene vinyl‐acetate rubber (EVM) composites with intumescent flame retardants (IFR) consisting of ammonium polyphosphate (APP) and dipentaerythritol (DPER) has been investigated. The vulcanization characteristics were analyzed by a moving die rheometer. Thermogravimetric analysis (TGA) and fire behavior tests such as limiting oxygen index (LOI), vertical burning (UL 94), and cone calorimetry were used to evaluate the thermal properties and flame retardancy of EVM composites. Scanning electron microscopy (SEM) was used to study the morphology of residues of EVM composites. The addition of BAC significantly increased the maximum torque (MH) of EVM composites and EVM matrices. The combination of IFR with BAC can improve the thermal stability of EVM composites. Moreover, BAC can enhance char residue and promote the formation of a network for IFR. The current EVM/37IFR/3BAC composite achieved an LOI of 33.6% and a UL 94 V‐0 rating. The PHRR, total heat release (THR), and total smoke release (TSR) for EVM/IFR/BAC were greatly reduced as compared to EVM/40IFR. Also, the mechanical properties of the EVMIFR/BAC composites increased with increasing BAC contents. The physical percolation effect between BAC and EVM before and after thermal degradation, and the chemical catalysis effect between BAC and IFR during thermal degradation are responsible for the improved flame retardancy of EVM composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42414.  相似文献   

20.
A char‐forming agent poly(4,6‐dichloro‐N‐hydroxyethyl?1,3,5‐triazin‐2‐amine‐1,6‐diaminohexane) (CNCO‐HA) containing triazine rings was chosen for improving the flame retardant of low density polyethylene (LDPE). The synergistic effect of CNCO‐HA and Ammonium polyphosphate (APP) on the flame retardancy and char‐forming behavior of LDPE were investigated. The limited oxygen index (LOI) and vertical burning test (UL‐94) results indicated the optimal weight ratio of APP to CNCO‐HA was 3:1, and the LOI value of composite reached 31.0% with 30% intumescent flame retardant (IFR) loading. The cone calorimeter test analysis revealed that IFR presented excellent char forming and smoke suppression ability, and resulted in the efficient decrease of combustibility parameters. The thermogravimetric analysis results demonstrated that IFR reduced the thermal degradation rate at main stage of degradation. Scanning electron microscopy observed that IFR promoted to form a compact and continuous intumescent char layer. The Laser Raman spectroscopy spectra showed that larger graphitization degree was formed to enhance the strength of char, and Fourier transform infrared results presented that P‐O‐C and P‐O‐P structures in the residue char were formed to improve shield performance of the char layer to obtain better flame retardant properties of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43950.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号