首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AB type diblock PS‐b‐PEO and ABA type triblock PS‐b‐PEO‐b‐PS copolymers containing the same proportions of polystyrene (PS) and poly(ethylene oxide) (PEO) but different connection sequence were synthesized and investigated. Using the sequential living anionic polymerization and ring‐opening polymerization mechanisms, diblock PS‐b‐PEO copolymers with one hydroxyl group at the PEO end were obtained. Then, using the classic and efficient Williamson reaction (realized in a ‘click’ style), triblock PS‐b‐PEO‐b‐PS copolymers were achieved by a coupling reaction between hydroxyl groups at the PEO end of PS‐b‐PEO. The PS‐b‐PEO and PS‐b‐PEO‐b‐PS copolymers were well characterized by 1H NMR spectra and SEC measurements. The critical micelle concentration (CMC) and thermal behaviors were also investigated by steady‐state fluorescence spectra and DSC, respectively. The results showed that, because the PEO segment in triblock PS‐b‐PEO‐b‐PS was more restricted than that in diblock PS‐b‐PEO copolymer, the former PS‐b‐PEO‐b‐PS copolymer always gave higher CMC values and lower crystallization temperature (Tc), melting temperature (Tm) and degree of crystallinity (Xc) parameters. © 2015 Society of Chemical Industry  相似文献   

2.
Segmented copolymers with telechelic poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE) segments and crystallizable bisester tetra‐amide units (two‐and‐a‐half repeating unit of nylon‐6,T) were studied. The copolymers were synthesized by reacting bifunctional PPE with hydroxylic end groups with an average molecular weight of 3500 g/mol and bisester tetra‐amide units via an ester polycondensation reaction. The bisester tetra‐amide units had phenolic ester groups. By replacing part of the bisester tetra‐amide units with diphenyl terephthalate units (DPT), the concentration of tetra‐amide units in the copolymer was varied from 0 to 11 wt%. Polymers were also prepared from bifunctional PPE, DPT, and a diaminediamide (6T6‐diamine). The thermal and thermal mechanical properties were studied by DSC and DMA and compared with a copolymer with flexible spacer groups between the PPE and the T6T6T. The copolymers had a high Tg of 180–200°C and a melting temperature that increased with amide content of 220–265°C. The melting temperature was sharp with monodisperse amide segments. The TmTc was 39°C, which suggests a fast, but not very fast, crystallization. The crystallinity of the amide was ~ 20%. The copolymers are semicrystalline materials with a high Tg and a high Tg/Tm ratio (> 0.8). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 512–518, 2007  相似文献   

3.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
Glassy polymer nanofibers with spatially confined poly(ethylene oxide) (PEO) were fabricated by coaxial electrospinning of PEO with polyacrylonitrile (PAN) or polystyrene. The effect of melt‐annealing on the crystallization behavior of the confined PEOs was studied using differential scanning calorimetry. It is found that the crystallization behavior of the confined PEOs varies with annealing temperature (Ta), annealing time (ta), and molecular weight of PEO. Notably, it is observed that the crystallization temperature (Tc) and melting temperature (Tm) of PEO increase with prolongation of ta, for PEO600K/PAN and PEO2K/PAN coaxial electrospun fibers. This phenomenon can be interpreted by the annealing‐induced demixing at the core‐sheath interface. After the coaxial electrospinning, the core and sheath of the PEO/PAN coaxial fibers are partially compatible due to the miscible solvents used for the core and sheath polymers. Upon annealing, demixing occurs at the core‐sheath interface, leading to improved crystallizability of PEO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45760.  相似文献   

5.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

6.
The crystallization behavior of semicrystalline PEO homopolymer/triblock PS‐PEO‐PS copolymer blend system, which exhibited “Dry‐Brush” in the melt. A symmetric polystyrene–poly(ethylene oxide)–polystyrene triblock copolymer was blended with PEO homopolymer (h‐PEO) having the same molecular weight as that of the PEO block in the copolymer. Considering the composition of the blend (Wps ≥ 0.8), PEO spheres were formed in the blend. Because of the dry‐brush phase behavior of this blend, h‐PEO added was localized in the PEO microdomains, which increases the domain size without changing the microdomain morphology. The crystallization of PEO block was confined within the microdomains and the crystallization temperature was about 60°C lower than normal. Self‐seeding tests were performed to clarify the nucleation mechanism of the blend. Because the droplets size varies greatly, multicrystallization peaks were witnessed in the self‐seeding process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The crystallization behavior of the blending system consists of homopolymer poly(ethylene oxide) (h‐PEO) with different molecular weights, and polystyrene‐block‐poly (ethylene oxide)‐block‐polystyrene (PS‐b‐PEO‐b‐PS) triblock copolymer has been investigated by DSC measurements. The crystallization of PEO block (b‐PEO) in block copolymer occurs under much lower temperature than that of the h‐PEO in the bulk (ΔT > 65 °C), which is attributed to the homogeneous nucleation crystallization behavior of the b‐PEO microdomains. In both the “dry‐brush” and the “wet brush” blending systems, the homogeneous nucleation crystallization temperature of PS‐b‐PEO‐b‐PS/h‐PEO blends increases due to the increase of the domain size. The heterogeneous nucleation crystallization temperatures of h‐PEO in the wet brush blending systems are higher than that of the corresponding h‐PEO in the bulk. At the same time, the heterogeneous nucleation crystallization temperature of b‐PEO10000 decreases from 43°C to 30°C and 40°C in the h‐PEO600 and h‐PEO2000 blending systems, respectively, because of the stretching of the PEO chains in the wet brush. However, this kind of phenomenon does not happen in the dry brush blending systems. The self‐seeding procedure was used to further ascertain the nucleation mechanism in the crystallization process. As a result, the self‐seeding domains have been confirmed, and the difference between the dry brush and wet brush systems has been observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

9.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

10.
A series of block copolymers composed of poly(ether ether ketone) (PEEK) and poly(ether ether ketone ketone) (PEEKK) components were prepared from their corresponding oligomers via a nucleophlilic aromatic substitution reaction. Various properties of the copolymers were investigated with differential scanning calorimetry (DSC) and a tensile testing machine. The results show that the copolymers exhibited no phase separation and that the relationship between the glass‐transition temperature (Tg) and the compositions of the copolymers approximately followed the formula Tg = Tg1X1 + Tg2X2, where Tg1 and Tg2 are the glass‐transition‐temperature values of PEEK and PEEKK, respectively, and X1 and X2 are the corresponding molar fractions of the PEEK and PEEKK segments in the copolymers, respectively. These copolymers showed good tensile properties. The crystallization kinetics of the copolymers were studied. The Avrami equation was used to describe the isothermal crystallization process. The nonisothermal crystallization was described by modified Avrami analysis by Jeziorny and by a combination of the Avrami and Ozawa equations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1652–1658, 2005  相似文献   

11.
The effect of thermal treatment over a wide range of temperature (130–280°C) on the crystallization behavior of nylon 6 was studied by using DSC, FTIR, and polarized light microscope equipped with a hot stage. The crystallization and the subsequent melting behavior of the nylon 6 samples treated at different temperatures (Ts) were classified into four types. When Ts was higher than 236°C or lower than 213°C, the crystallization behavior of nylon 6 was insensitive to the variation of Ts. When Ts was in the range of 213–235°C, the crystallization behavior was sensitive to the change of Ts. The polarized light microscopic experiments have demonstrated that a large amount of tiny ordered nylon 6 segments/cluster persisted when nylon 6 film are heated to 231°C. Consequently, the fastest crystallization speed was observed. As Ts was between 214 and 223°C, both the Tm and the ΔHm were higher than those of the nylon 6 samples treated at other temperature. The polarized light microscopic investigations have also demonstrated that molten nylon 6 crystallizes by using the un‐molten nylon 6 crystals as nucleation center at 220°C. Crystallization at higher temperature produces nylon 6 with thicker crystalline lamella. The above results are helpful for rational design of thermal treatment procedure to obtain nylon 6 with different crystalline features. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42413.  相似文献   

12.
In this research, influence of incorporating LiClO4 salt on the crystallization, conformation, and ionic conductivity of poly(ethylene oxide) (PEO) in its miscible blend with poly(methyl methacrylate) (PMMA) is studied. Differential scanning calorimetry showed that the incorporation of salt ions into the blend suppresses the crystallinity of PEO. The X‐ray diffraction revealed that the unit‐cell parameters of the crystals are independent of the LiClO4 concentration despite of the existence of ionic interactions between PEO and Li cations. In addition, the complexation of the Li+ ions by oxygen atoms of PEO is investigated via Fourier transform infrared spectroscopy. The conformational changes of PEO segments in the presence of salt ions are studied via Raman spectroscopy. It is found that PEO chains in the blend possess a crown‐ether like conformation because of their particular complexation with the Li+ ions. This coordination of PEO with lithium cations amorphize the PEO and is accounted for suppressed crystallinity of PEO in the presence of salt ions. Finally, electrochemical impedance spectroscopy is used to characterize the ionic conductivity of PEO in the PEO/PMMA/LiClO4 ternary mixture at various temperatures. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A generalized equation was derived to calculate the melting temperatures of homopolymers and copolymers. The Gibbs‐Thomson equation for homopolymers and a modified application to copolymers were derived using the proposed equation. The melting temperature Tm0 in the Flory equation corresponds to the melting temperature TmC,∞ of copolymer crystals with stems of infinite length. Also, TmC,n*, the melting temperature for copolymer crystals with stems containing the maximum possible number of structural units, n*, should be used instead of Tm0 as the basis of supercooling in crystallization. The proposed equation shows good agreement with experimental data for α‐alkene‐ethylene homogeneous copolymers.  相似文献   

14.
Three benzoxazines based on o‐allylphenol and 1,6‐hexamethylenediamine (HDA) or 4,4′‐diaminodiphenyl methane (DDM) or 4,4′‐diaminodiphenyl ether (DDE) were respectively blended with diglycidyl ether of bisphenol‐A (DGEBA) in various weight ratios followed by thermal polymerization to prepare three series of benzoxazine/DGEBA copolymers. With increasing DGEBA content, the peak temperature of the exothermic peaks in the DSC curves shows a systematic increase for the three series of benzoxazine/DGEBA blends. Each copolymer shows a single glass transition temperature (Tg). As the content of DGEBA is increased, Tg reaches a minimum for the copolymer system based on HDA but a maximum for the two systems based on DDM and DDE. For the same benzoxazine/DGEBA weight ratio, copolymers based on DDM and DDE show high Tg values over those based on HDA. The three series of benzoxazine/DGEBA copolymers exhibit a one‐way dual shape memory effect based on Tg, and the shape memory properties of the copolymers under tensile deformation mode vary with the variation of both diamine bridge structure and DGEBA content. © 2018 Society of Chemical Industry  相似文献   

15.
Ring opening polymerization of L ‐lactide was realized in the presence of monomethoxy poly(ethylene glycol), using zinc lactate as catalyst. The resulting PLLA‐PEG diblock copolymers were characterized by using 1H‐NMR, SEC, WAXD, and DSC. All the copolymers were semicrystalline, one or two melting peaks being detected depending on the composition. Equilibrium melting temperature (Tm0) of PLLA blocks was determined for three copolymers with different EO/LA molar ratios. Tm0 decreased with decreasing PLLA block length. A copolymer with equivalent PLLA and PEG block lengths was selected for melt crystallization studies and the resulting data were analyzed with Avrami equation. The obtained Avrami exponent is equal to 2.6 ± 0.2 in the crystallization temperature range from 80 to 100°C. In addition, the spherulite growth rate of PLLA‐PEG was analyzed by using Lauritzen‐Hoffmann theory in comparison with PLLA homopolymers. The nucleation constant was found to be 2.39 × 105 K2 and the free energy of folding equal to 53.8 erg/cm2 in the range of 70–94°C, both higher than those of PLLA homopolymers, while the spherulite growth rate of the diblock copolymer was lower. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

16.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A thermoplastic hydrogel based on a pentablock copolymer composed of poly(γ‐benzyl L ‐glutamate) (PBLG) and poloxamer was synthesized by polymerization of BLG N‐carboxyanhydride, which was initiated by diamine‐terminated groups located at the ends of poly(ethylene oxide) (PEO) chains of the poloxamer, to attain a new pH‐ and temperature‐sensitive hydrogel for drug delivery systems. Circular dichroism measurements in solution and IR measurements in the solid state revealed that the polypeptide block existed in the α‐helical conformation, as in the PBLG homopolymer. The intensity of the wide‐angle X‐ray diffraction patterns of the polymers depended on the poloxamer content in the copolymer and showed basically similar reflections to the PBLG homopolymer. The melting temperature (Tm) of the poloxamer in the copolymer was reduced with an increase of the PBLG block in comparison with the Tm of the poloxamer, which is indicative of a thermoplastic property. The water contents of the copolymers were dependent on the poloxamer content in the copolymers, for example, those for the GPG‐2 (48.7 mol % poloxamer) and GPG‐1 (57.5 mol % poloxamer) copolymers were 31 and 41 wt %, respectively, indicating characteristics of a polymeric hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2649–2656, 2003  相似文献   

18.
A series of MC nylon‐6/ polyethylene oxide (PEO) blends were prepared via in situ polymerization. It was found that addition of PEO delayed the polymerization process of caprolactam. The apparent activation energy and pre‐exponential factor increased, indicating that the polymerization reaction became difficult with increasing PEO content. The stress–strain curves of the blends presented strain hardening behavior and increasing elastic deformation stress plateau at low PEO content. Nonisothermal DSC and XRD tests indicated that addition of PEO led to a decrease of the crystallization ability of the nylon‐6 matrix by reducing crystal grain size and crystallinity, whereas the crystallization ability of the PEO phase was improved. No co‐crystal formed between the two phases. PEO with low content only existed as amorphous state, while with increasing PEO content, PEO can crystallize gradually, forming interfibrillar segregation first, and then forming interspherilute segregation of the blend independently. By addition of PEO, the fracture surface of the blend became rough, displaying character of tough fracture. The interface between nylon‐6 phase and PEO phase was diffused, and the nylon‐6 matrix around the PEO particles presented fibrous structure, indicating the good compatibility between them. The toughening mechanism of the blend corresponded to the crazing‐shear banding mechanism. POLYM. ENG. SCI., 55:589–597, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
The structure, crystallization, and phase behavior of nylon6‐b‐polytetrahydrofuran‐b‐nylon6 triblock copolymers synthesized via activated anionic polymerization have been studied. The composition, molecular weight of polytetrahydrofuran (PTHF) soft block, and type of polymeric activators (PACs) have been varied. Differential Scanning Calorimetry (DSC), Wide‐Angle X‐ray Diffraction (WAXD), Transmission Electron Microscopy (TEM), and Polarized Light Microscopy (PLM) experiments have revealed that in triblock copolymers only the nylon‐6 component crystallizes while PTHF segments are amorphous. The soft blocks do not alter the spherulitic crystalline structure of nylon‐6 and hard blocks crystallize in the α‐modification. The degree of crystallinity decreases with increasing PTHF concentration. The phase behavior has been investigated by Dynamic Mechanical Thermal Analysis (DMTA). Two different glass transition temperatures (Tg) for all samples have been observed. This indicates that nylon‐6 and PTHF segments are not molecularly miscible and the copolymers are microphase separated. The mechanical properties of the copolymers synthesized have been evaluated. Nylon‐6 copolymers with soft block concentrations up to 10 w/w %, exhibit improved notched impact strength in comparison to the nylon‐6 homopolymer, retaining relatively high hardness and tensile strength. All copolymers possess low water absorption and good thermal stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1448–1456, 2002; DOI 10.1002/app.10448  相似文献   

20.
The aggregation behavior of a di‐ and tri‐block copolymers of type PEO‐PBO, PEO‐PBO‐PEO, surface‐active ionic liquid (SAIL) of type 4‐dodecyl‐4‐methylmorpholinium chloride [C12mmor][Cl], and 1‐dodecyl‐1‐methylpyrrolidinium chloride [C12mpyrr][Cl]) in water as well as in 10 mM of a poorly water soluble dexamethasone (dex) aqueous solution was studied by determining the critical micelle concentrations using drug solubilization, surface tension, and isothermal titration calorimetry (ITC) methods. ITC measurements were also made on solutions prepared by mixing the micellar aqueous solutions of copolymers and simple aqueous solutions of SAIL across the mole fractions at three different temperatures (298.15, 308.15, and 318.15 K). The thermodynamic parameters, namely Gibbs free energy (ΔGm), enthalpy (ΔHm), and entropy (ΔSm), of micellization were calculated, and it was observed that the negative ΔGm and positive ΔSm for the mixture solutions increase with the increase in mole fraction of SAIL. Otherwise, the micellization is reported to be a spontaneous and highly entropy‐driven process. The dex‐solubilized micellar solutions were mixed with agar to obtain standing gels. The gel samples were dry‐cast into thin films, and the release of dex from films by simple dilution was monitored by UV measurements. The drug release data was fitted to several mechanistic models, and it was inferred that the release mechanism for dex from thin films is non‐Fickian for mixtures and Fickian in copolymer or SAIL micellar aqueous solutions. The transport of dex is diffusion‐controlled with diffusivities of 5.8–12 × 10?11 m2 s?1 for copolymer micelles, 5–11 × 10?11 m2 s?1 for micelles of SAIL, and 3–14 × 10?11 m2 s?1 for the mixed micelles of copolymer and SAIL in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号