首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Because of protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties (characterized by TGA and DSC) and improved flame retardant (proven by ASTM D1230‐99). Furthermore, the surface analysis (XPS and SEM) confirmed the presence of the SiO2 network attached to the substrates even after intense ultrasound washes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The structures of the intumescent charred layers formed from expandable graphite (EG)‐based intumescent halogen‐free flame retardant (HFFR) linear low‐density polyethylene (LLDPE) blends and their flame‐retardant mechanism in the condensed phase have been studied by dynamic Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), differential thermal analysis (DTA) and thermal conductivity (TC) measurements. The dynamic FTIR, XPS and LRS data show that the carbonaceous structures of intumescent charred layers consist of EG and various numbers of condensed benzene rings and/or phosphocarbonaceous complexes attached by the P? O? C and P? N bonds or quaternary nitrogen products. The addition of EG can hasten the formation of these phosphocarbonaceous structures. The above results show that the flame‐retardant mechanism in the condensed phase is that the compact char structures, as observed by SEM, slow down heat and mass transfer between the gas and condensed phase and prevent the underlying polymeric substrate from further attack by heat flux in a flame. The DTA and TC data show that carbonaceous charred layers are good heat‐insulating materials, the TC value of which is only about one‐tenth of that of the corresponding blend and that they increase the oxidization temperature and decrease thermal oxidization heat of the LLDPE/EG/HFFR systems. © 2003 Society of Chemical Industry  相似文献   

3.
This paper reports studies on the heat transfer of a PU‐based intumescent flame‐retardant coating. A three‐dimensional model has been developed to describe the various physical processes of the system when testing the flame‐retardant (FR) properties, such as char index and weight loss, by the cabinet method. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
Two intumescent flame‐retardant (IFR) additives, IFR‐I and IFR‐II, were synthesized and their structure was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Polylactide (PLA) was modified by the two IFRs to obtain flame‐retardant composites. The flammability of the PLA/IFR composites was characterized by the vertical burning test UL‐94 and limiting oxygen index. The limiting oxygen index values of the PLA composites increased with increase of IFR content. The PLA composite with 20 wt% IFR‐I could pass the UL‐94 V0 rating, while the composite with 30 wt% IFR‐II could not. The results of pyrolysis combustion flow calorimetry showed that the heat release capacity of PLA composites with 30 wt% IFR‐I decreased 43.1% compared with that of pure PLA. The thermal degradation and gas products of PLA/IFR‐I systems were monitored by thermogravimetric analysis and thermogravimetric analysis infrared spectrometry. Scanning electron microscopy was used to investigate the surface morphology of the char residue. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
A new intumescent flame retardant (IFR) system consisting of ammonium polyphosphate (APP) and charing‐foaming agent (CFA) and a little organic montmorillonite (OMMT) was used in low‐density polyethylene (LLDPE)/ethylene‐vinyl acetate (EVA) composite. According to limiting oxygen index (LOI) value and UL‐94 rating obtained from this work, the reasonable mass ratio of APP to CFA was 3 : 1, and OMMT could obviously enhance the flame retardancy of the composites. Cone calorimeter (CONE) and thermogravimetric analysis (TGA) were applied to evaluate the burning behavior and thermal stability of IFR‐LLDPE/EVA (LLDPE/EVA) composites. The results of cone calorimeter showed that heat release rate peak (HRR‐peak) and smoke production rate peak (SPR‐peak) and time to ignition (TTI) of IFR‐LLDPE/EVA composites decreased clearly compared with the pure blend. TGA data showed that IFR could enhance the thermal stability of the composites at high temperature and effectively increase the char residue. The morphological structures of the composites observed by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) demonstrated that OMMT could well disperse in the composites without exfoliation, and obviously improve the compatibility of components of IFR in LLDPE/EVA blend. The morphological structures of char layer obtained from Cone indicated that OMMT make the char layer structure be more homogenous and more stable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Pyrophosphoric lactone‐modified polyester containing two phosphorous functional groups in one structural unit of base resin was synthesized to prepare a nontoxic, reactive flame‐retardant coatings. Then, the pyrophosphoric lactone‐modified polyester was cured at room temperature with isocyanate and isophorone diisocyanate (IPDI)–isocyanurate to get a two‐component polyurethane flame‐retardant coatings (TAPPU). Comparing the physical properties of the films of TAPPU with the film of nonflame‐retardant coatings, no deterioration of physical properties was observed with the incorporation of a flame‐retarding component into the resin. Three kinds of flame retarding tests were conducted, including the 45° Meckel burner method, limiting oxygen index method (LOI method), and oxygen combustion method with Cone calorimeter. It was observed that the char lengths were 3.1~4.5 cm and LOI values were 27~30%. These results indicate that the prepared coatings are good flame‐retardant ones. It was also found that the flame retardancy of those coatings was increased with the contents of phosphorous. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2316–2327, 2001  相似文献   

7.
Pentaerythritol diphosphonate melamine–dicyandiamide–formaldehyde resin salt, a novel macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR, NMR and element analysis. The flame retardancy and thermal behavior of a new IFR system for epoxy resin were investigated by LOI, UL‐94 test, TG, and IR. Activation energy for the decomposition of samples was obtained using Kissinger equation. 25% of weight of IFR were doped into epoxy resin to get 27.5 of LOI and UL 94 V‐0. The TG curves and IR spectra show that IFR decreases the initial decomposition temperature and the maximum weight loss rate of epoxy resin, and enhances the thermal stability of epoxy resin at high temperatures and char yield. The activation energy for epoxy resin containing IFR was decreased by 44.8 kJ/mol, which shows that IFR can catalyze decomposition of epoxy resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
In this article, N‐Methylol dimethylphosphonopropionamide (FR) in combination with a melamine resin (CL), phosphoric acid (PA) catalyst and zinc oxide (ZnO) or nano‐ZnO co‐catalyst were used (FR‐CL‐PA‐ZnO or nano‐ZnO system) to impart flame‐retardant property on cotton fabrics. FR‐CL or FR‐CL‐PA‐treated cotton specimen showed roughened and wrinkled fabric surface morphology, which was caused by the attack of the FR with slightly acidity. In addition, FTIR analysis showed some new characteristic peaks, carbonyl, CH2 rocking and CH3 asymmetric and CH2 symmetric stretching bands, in the chemical structure of treated cotton specimens. Apart from these, the flame ignited on the flame‐retardant‐treated fabrics (without subjected to any post‐wet treatment) extinguished right after the removal of ignition source. However, FR‐CL treated specimens were no longer flame‐resistant when the specimens subjected to neutralization and/or home laundering, while FR‐CL‐PA treated specimens showed opposite results. By using 0.2% and 0.4% of ZnO or nano‐ZnO as co‐catalyst, the flame spread rate of neutralized and/or laundered test specimens decreased, even the specimens were undergone 10 home laundering cycles. Moreover, flame‐retardant‐treated cotton specimens had low breaking load and tearing strength resulting from side effects of the crosslinking agent used, while addition of ZnO or nano‐ZnO co‐catalyst could compensates for the reduction. Furthermore, the free formaldehyde content was dropped when ZnO and nano‐ZnO co‐catalyst was added in the treatment. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Potassium diphenyl sulfonate (SSK), poly(sulfonyl phenylene phosphonate) (PSPPP), and their mixtures are proved to be effective flame‐retardants for polycarbonates (PCs) by measuring the limited oxygen index values and UL‐94 of blends. The flame‐retardant systems are characterized by thermogravimetric analysis under dynamic conditions. The resulting data, together with the analysis of the activation energies, demonstrates that the additives accelerate thermodegradation, especially in the early stage, and different additives cause a different process in the final stage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 882–889, 2003  相似文献   

10.
Mesoporous silica SBA‐15 synthesized from Pluronic P123 and tetraethoxysilane was used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame‐retardant (IFR) system. Limiting oxygen index (LOI), UL‐94 rating and thermogravimetric analysis were used to evaluate the synergistic effect of SBA‐15 on PP/IFR system. It showed that PP/IFR system could reach V‐0 with loading of SBA‐15 ranging from 0.5 to 3 wt%, while without SBA‐15 it had no rating at UL‐94 test. The LOI value increased from 25.5 to 32.2 when the loading of SBA‐15 was 1 wt%. The thermal stability of PP/IFR was improved in the presence of SBA‐15 and the amount of the char residue at 600° C was increased from 8.96 to 16.42 wt% when loading of SBA‐15 varied from 0.5 to 5 wt%. Laser Raman spectroscopy (LRS) and scanning electron microscopy were employed to study the morphology of the char residue of PP/IFR system with and without SBA‐15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A star‐shaped DOPO derivative (GL‐3DOPO, P content 10.8 wt %) was synthesized through a two‐step reaction involving glycerol, acryloyl chloride, and DOPO. The derivative demonstrated a great improvement of thermal decomposition temperature increased to 360 °C from 194 °C (under N2 atmosphere), promoting its application in thermoplastics of high processing temperature. When blended with engineering plastics including PET, PBT, PC, PA6, and PA66 at a GL‐3DOPO loading of 25 wt %, all the compounds reached the UL94 V‐0 level and increased limit oxygen index (LOI). In PET system, LOI raised from 22.8% to 35.4% with P 2.5 wt % and passed the V‐0 test with only 0.8 P wt %. Compact char layers were found in the PET system after LOI test, suggesting that GL‐3DOPO acted both in gas and condensed‐phase mode. All results indicated that GL‐3DOPO could be a potential flame‐retardant for engineering plastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44892.  相似文献   

12.
A novel flame retardant zinc methylethylphosphinate (Zn(MEP)) was used to fill epoxy resins (EPs). The structure of Zn(MEP) was conformed with Fourier transform infrared, hydrogen nuclear magnetic resonance and phosphorus nuclear magnetic resonance, and X‐ray fluorescent and X‐ray diffraction. The flammability, decomposition behavior, and glass transition temperature (Tg) of cured EP/Zn(MEP) were investigated. Zn(MEP) is stable below 406°C. EP containing 20 phr of Zn(MEP) achieves 27.5% of limiting oxygen index and UL‐94 V0 rating. Scanning electron microscopy‐energy‐dispersive X‐ray and Fourier transform infrared spectroscopy investigations show that a condensed char layer with carbon‐rich and phosphorus‐rich components was formed during heating Zn(MEP)/EP, the atomic ratio of P to Zn on the surface of the char is reduced compared with the initial sample. The P‐rich components and lower atomic ratio of P/Zn on the char surface implies that the Zn(MEP) acts in both condensed phase and gas phase. TGA investigation shows that there are interactions between Zn(MEP) and EP when they are copyrolyzed. The interactions lead to a modification in degradation process and promote the char forming. Compared with aluminum diethylphosphinate Zn(MEP) filled EP shows lower limiting oxygen index but higher Tg. In addition, the interactions between polymer and additive are different when aluminum diethylphosphinate instead of Zn(MEP) is added into EP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The halogen‐free flame‐retardant polystyrene (PS) composites containing expandable graphite (EG) and melamine phosphate (MP) were prepared successfully, and the thermal degradation behavior and fire performance were investigated by various measurements. The experimental results show that EG and MP have a synergistic effect on flame‐retardant PS, which can catalyze the char formation from PS. PS/MP/EG(1:2) composite achieves limited oxygen index value of 28.0% and UL‐94V‐0 (1.6 mm) rate. The mass retention at high temperature (800 °C) under air atmosphere of PS composites have a large increase by the introduction of EG and MP. Microscale combustion calorimeter (MCC) and cone calorimetric analysis indicate that the heat release rate and total heat release of PS/MP/EG(1:2) composite are reduced significantly, because the formed thick char layer has a notable barrier property. The study on the char residue of PS/MP/EG(1:2) composite by X‐ray photoelectron spectroscopy (XPS) analysis confirms the formation of the stable structures containing P? O? C. Furthermore, the mechanical properties of PS composites were also investigated; compared with neat PS, the addition of flame retardants leads to the decrease of tensile strength and flexural strength, but the impact strength of PS/MP/EG(1:2) has increased by 44.2%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45474.  相似文献   

14.
Transition‐metal‐ion‐doped flame‐retardant coatings were constructed on the surface of ramie fabrics by a layer‐by‐layer (LbL) assembly technique to investigate possible cooperative actions that could improve the fabric's flame‐retardant efficiency. We found that these functional coatings, consisting of poly(vinylphosphonic acid) (the anionic layer) and branched polyethylenimine/cupric or zinc ions (the cationic layer), improved the fire retardancy of the ramie fabrics remarkably. Attenuated total reflectance–Fourier transform infrared (FTIR) spectroscopy and energy dispersive X‐ray spectroscopy demonstrated the successful LbL assembly process and the incorporation of metal ions into the coating. Thermogravimetric analysis coupled with FTIR spectrometry, vertical flame testing, and microscale combustion calorimetry confirmed the improved thermal stability and reduced flammability of the coated ramie fabrics. All of the results show that the metal‐ion‐doped flame‐retardant coatings not only dramatically increased the residues but also retained the original weave structure and fiber morphology of ramie fabrics well. The enhanced flame‐retardant efficiency may have been caused by the lower decomposition temperature of the flame‐retardant coating, as promoted by cupric and zinc ions, and as a result, may have helped the flame‐retardant activity to take place earlier. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
The flame‐retardant behavior of calcium hypophosphite (CaHP) was investigated in different thermoplastic polymers including polyamide 6 (PA), poly (lactic acid) (PLA), thermoplastic polyurethane (TPU), and poly methyl metacrylate (PMMA). CaHP was used at three different amounts of 10, 20, and 30 wt%. The characterization of the composites was performed using limiting oxygen index (LOI), vertical burning test (UL 94), thermogravimetric analysis (TGA), and mass loss calorimeter test. According to the test results, CaHP enhances the fire‐retardant properties in different levels depending on the polymer type. The CaHP exhibits its flame‐retardant effect via the formation of foamed char structure in the condensed phase and via the dilution and radical scavenging effect in the gas phase.  相似文献   

16.
After a series of investigations on the durable flame‐retardant finishes, it was thought to be important to study these durable flame‐retardant finished materials from the thermal analytical standpoint. Accordingly, cotton fabric was finished with N‐methylol dialkyl phosphonopropionamide (Pyrovatex C) by thermofixation and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) precondensate by ammonia cure (Proban), as well as with THPS monomer by heat cure under various conditions, and subjected to the thermogravimetry (TG) to observe thermal degradation behaviors and obtain apparent activation energy (Ea). TG curves of Proban‐finished samples showed the largest shift to lower temperatures with a steep slope; thermofixed THPS‐finished sample gave a smaller shift with similar steep slope, whereas Pyrovatex‐finished samples exhibited a similar shift but with a gradual slope. Ea versus residual ratio curves led us to conclude that C N bond‐rich Proban polymer requires the highest Ea and decomposes with considerable rapidity, whereas ethylene‐bond‐rich Pyrovatex‐finished samples with melamine crosslinking decompose gradually with the lowest Ea. As for the relationship between flame retardance and Ea distribution in the process of thermal degradation, typical differences among the above three kinds of finished samples were found, which are compared and discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 975–987, 1999  相似文献   

17.
Flame retardancy (FR) in polycarbonate (PC) and polypropylene (PP) was obtained through the application of an intumescent coating on the polymeric substrate. A better performance was obtained with PC, a char former and highly viscous polymer, compared to with PP. Indeed, whereas 61 μm was required to obtain good FR (by the UL94 V0 rating, in particular) in the case of PC, at least 158 μm needed to be used to give FR to PP. The aging of the coated materials induced by UV‐filtered light radiation was then studied. This exposure led to a decrease in the FR. This effect was more pronounced in the case of PP compared to that of PC. The decrease in the FR was attributed to a decrease in the adhesion of the coating on the polymeric substrate because of its suspected physical aging. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39566.  相似文献   

18.
The structures of the intumescent charred layers formed from polyolefin (PO) blends with expandable graphite (EG) and/or the other free‐halogen flame retardant (HFFR) and their flame‐retardant mechanism were studied by Fourier transform infrared (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermal conductivity (TC) measurements. The FTIR, XPS, and LRS data showed that the carbonaceous structures of intumescent charred layers consist of EG and various numbers of condensed benzene rings and/or phosphocarbonaceous complexes attached by the P—O—C and P—N bonds or quaternary nitrogen or dehydrated zinc borate (ZB). These results and the morphologic structures observed by SEM have demonstrated that the compact structures of charred layers slow down heat and mass transfer between the gas and condensed phase and prevent the underlying polymeric substrate from further attack by heat flux in a flame. The DTA data provide the positive evidence for the flame‐retardant mechanism of the PO/EG/HFFR systems, which works by increasing the oxidation temperature and decreasing thermal oxidation heat. At the same time, the TC data reveal the flame‐retardant essence of the charred layers as good heat‐insulated materials whose TC value is only about 1/10 of the corresponding blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1190–1197, 2001  相似文献   

19.
The synergistic effects of fumed silica on the thermal and flame‐retardant properties of intumescent flame retardant (IFR) polypropylene based on the NP phosphorus‐nitrogen compound have been studied by Fourier transfer infrared (FTIR) spectroscopy, cone calorimeter test (CCT), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and UL‐94 tests. The LOI and UL‐94 data show that when ≤1 wt % fumed silica substituted for the IFR additive NP can increase 2 to 4% LOI values of the PP blends and keep the V‐0 rating. The data obtained from the CCT tests indicate the heat release rates (HRR) reduce by about 23% for the PP/NP sample with 0.5 wt % fumed silica, whereas the mass loss rates (MLR) and total heat release (THR) values are much lower than those of the PP/NP samples without fume silica. The TGA data demonstrate that a suitable amount of fumed silica can increase the thermal stability and charred residue of the PP/IFR/SiO2 blends after 500°C. The morphological structures of charred residues observed by SEM give positive evidence that a suitable amount of fumed silica can promote the formation of compact intumescent charred layers and prevent the charred layers from cracking, which effectively protects the underlying polymer from burning. The dynamic FTIR spectra reveal that the synergistic flame‐retardant mechanism of a suitable amount of fumed silica with IFR additive is due to its physical process in the condensed phases. However, a high loading of fumed silica restricts the formation of charred layers with P? O? P and P? O? C complexes formed from burning of polymer materials and destroys the swelling behavior of intumescent charred layers, which deteriorates the flame retardant and thermal properties of the PP/IFR blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Flame‐retardant nanoparticles of sizes ranging between 33 ± 6 and 460 ± 50 nm were formed by the emulsion polymerization of the pentabromobenzyl acrylate (PBBA) monomer in the presence of sodium dodecyl sulfate as the surfactant and potassium persulfate as the initiator. The effect of various polymerization parameters, e.g. monomer, crosslinker monomer, initiator and surfactant concentrations, on the size, size distribution and polymerization yield of the poly(pentabromobenzyl acrylate) nanoparticles produced has been elucidated. Poly(pentabromobenzyl acrylate)/polystyrene (PPBBA/PS) nanoblends containing 15% and 70% of PPBBA particles of 33 ± 6 and 460 ± 50 nm diameter were prepared by mixing the particles with a PS solution in methylene chloride, followed by evaporation of the methylene chloride from the mixture. The effect of the size and the content of the PPBBA nanoparticles in the nanoblends on the thermal stability of the PS were also elucidated. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号