首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microstructural characterization of corn starch‐based porous thermoplastic (TPS) composites containing various contents (0.1, 0.5, and 1 wt %) of multiwalled carbon nanotubes (MWCNTs) was performed. Corn starch was plasticized with a proper combination of glycerol and stearic acid. TPS composites with MWCNT were prepared conducting melt extrusion followed by injection molding. TPS containing 1 wt % of MWCNTs exhibited higher tensile strength and elastic modulus values than neat TPS. Moreover, TPS electrical conductivity was determined to increase with increasing content of MWCNTs. X‐ray diffraction measurements revealed that incorporation of MWCNTs increased the degree of TPS crsystallinity to some extent. Scanning electron microscopy examination revealed that MWCNT altered TPS surface morphology and tensile failure modes, significantly. Transmission electron microscopy investigation showed that dispersion characteristics of MWCNTs within TPS were in the form of tiny clusters around micro pores of TPS, which is considered influential on electrical conductivity of the resulting composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Hao Tong  Hu-Lin Li  Xiao-Gang Zhang 《Carbon》2007,45(12):2424-2432
A new method of synthesis of highly dispersed Pt nanoparticles with large catalytic surface area on multi-walled carbon nanotubes (MWCNTs) under high-intensity ultrasonic field was developed. The method, with low processing temperature at 25 °C, took only about 5 min. The surface characterization of MWCNTs was carried out by fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy methods. The electrochemical surface area and pore volume of MWCNTs were also examined. The result showed that functional groups of the MWCNTs which favored the high loading and high dispersion of particles and electrochemical surface area of MWCNTs were reinforced in the case of high-intensity ultrasonic field. The Pt/MWCNT catalysts were characterized by energy dispersion X-ray spectra analysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. The prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt particles was 3.4 ± 0.2 nm. The electrocatalytic properties of Pt/MWCNT composites and kinetic characterization for methanol electro-oxidation were investigated by cyclic voltammetry. The Pt/MWCNT catalysts prepared for 5 min in ultrasonic field present excellent electrochemical activities. The schematic of the reaction was also introduced.  相似文献   

3.
The relationship between the concentration of silane, the degree of surface coverage and the functionalization of multiwall carbon nanotubes (MWCNTs) upon silanization is experimentally investigated. MWCNT silanization is conducted using a γ-methacryloxypropyltrimethoxy silane varying its concentration with respect to the weight of the MWCNTs from 3.5% to 1000% (10×). Physicochemical characterization of the MWCNTs points out that the optimum range of silane concentration required to generate adequate surface coverage on the MWCNTs is between one and two times the weight of the MWCNTs. This optimum range of silane concentration is further confirmed by mechanical testing of silanized MWCNT/vinyl ester polymer composites.  相似文献   

4.
A facile and economic method is developed for the fabrication of new lightweight materials with high electromagnetic interference (EMI) shielding performance, good mechanical properties and low electrical percolation threshold through melt mixing. Electrical properties, DC conductivity, EMI shielding performance and mechanical properties of poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) nanocomposites with varying filler loading of MWCNTs were investigated. High‐resolution transmission electron microscopy was used to determine the distribution of MWCNTs in the PTT matrix. The newly developed nanocomposites show excellent dielectric and EMI shielding properties. Theoretical electrical percolation threshold was achieved at 0.21 wt% loading of MWCNTs, due to the high aspect ratio and the three‐dimensional network formation of MWCNTs. Experimental DC conductivity values were compared with those of theoretical models such as the Voet, Bueche and Scarisbrick models, which showed good agreement. The PTT/3% MWCNT composite showed an EMI shielding value of ~38 dB (99.99% attenuation) with a sample thickness of 2 mm. Power balance was used to determine the actual contribution of reflection, absorption and transmission loss to the total EMI shielding value. The nanocomposites showed good tensile and impact properties and the composite with 2% MWCNTs exhibited an improvement in tensile strength of as much as 96%. © 2018 Society of Chemical Industry  相似文献   

5.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

6.
Poly(p‐phenylene benzobisoxazole)/multiwalled carbon nanotubes (PBO‐MWCNT) composites with different MWCNT compositions were prepared through in situ polymerization of PBO in the presence of carboxylated MWCNTs. The nanocomposite's structure, thermal and photophysical properties were investigated and compared with their blend counterparts (PBO/MWCNT) using Fourier transform infrared spectra, Raman spectra, Wide‐angle X‐ray diffraction, thermogravimetric analysis, UV‐vis absorption, and photoluminescence. The results showed that MWCNTs had a strong interaction with PBO through covalent bonding. The incorporation of MWCNTs increased the distance between two neighboring PBO chains and also improved the thermal resistance of PBO. The investigation of UV‐vis absorption and fluorescence emission spectra exhibited that in situ PBO‐MWCNT composites had a stronger absorbance and obvious trend of red‐shift compared with blend PBO/MWCNT composites for all compositions. This behavior can be attributed to the efficient energy transfer through forming conjugated bonding interactions in the PBO‐MWCNT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Poly(vinyl chloride) (PVC)/acrylonitrile–butadiene rubber (NBR) were mixed with multiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) to prepare microwave‐absorbing composites. The complex permittivity, direct‐current (dc) conductivity, microwave‐absorbing performance, morphology, and mechanical properties of the composites were studied. The real and imaginary parts of the permittivity of the composites increased with increasing MWCNT content. The premixing of the MWCNTs with PVC was more beneficial to the dispersion of MWCNTs; this led to a higher dc conductivity and permittivity and better microwave‐absorbing performance than the premixing of MWCNTs with NBR for the PVC/NBR/MWCNT composites. The PVC/NBR/MWCNT composites had a minimum reflection loss (RLmin) of ?49.5 dB at the optimum thickness of 1.96 mm. The efficient microwave absorption of the PVC/NBR/MWCNT composites was due to a high dielectric loss and moderate permittivity. The incorporation of SiC into the PVC/NBR/MWCNT composites increased the real and imaginary parts of permittivity of the composites. When the SiC content was 70 phr, RLmin decreased to ?34.9 dB at a thickness of 3 mm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
We describe the preparation, characterization and physical properties of multiwalled carbon nanotube (MWCNT)‐filled epoxidized natural rubber (ENR) composites. To ensure better dispersion in the elastomer matrix, the MWCNTs were initially subjected to aminopropyltriethoxysilane (APS) treatment to bind amine functional groups (?NH2) on the nanotube surface. Successful grafting of APS on the MWCNT surface through Si–O–C linkages was confirmed using Fourier transform infrared spectroscopy. Grafting of APS on the MWCNT surface was further corroborated using elemental analysis. ENR nanocomposites with various filler loadings were prepared by melt compounding to generate pristine and APS‐modified MWCNT‐filled elastomeric systems. Furthermore, we determined the effects of various filler loadings on the rheometric, mechanical, electrical and thermal degradation properties of the resultant composite materials. Rheometric cure characterization revealed that the torque difference increased with pristine MWCNT loading compared to the gum system, and this effect was more pronounced when silane‐functionalized MWCNTs were loaded, indicating that this effect was due to an increase in polymer–carbon nanotube interactions in the MWCNT‐loaded materials. Loading of silane‐functionalized MWCNTs in the ENR matrix resulted in a significant improvement in the mechanical, electrical and thermal degradation properties of the composite materials, when compared to gum or pristine MWCNT‐loaded materials.© 2013 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Polymer/multi‐walled carbon nanotube (MWCNT) composites are one of the most promising alternatives to conventional polymer composites filled with micrometre‐sized fillers. This approach can also be applied for the improvement of mechanical properties and thermal stability of biodegradable aliphatic polyesters, such as poly(L ‐lactide) (PLLA), which have been receiving increasing attention due to environmental concerns. Thermal degradation behaviour provides useful information for the determination of the optimum processing conditions and for identification of potential applications of final products. RESULTS: The PLLA/MWCNT composites investigated showed a higher thermal degradation peak temperature and onset temperature of degradation along with a higher amount of residue at the completion of degradation than neat PLLA. Moreover, PLLA/MWCNT composites with a greater MWCNT content showed higher activation energy of thermal degradation than those with a lower MWCNT loading, which confirmed the positive effect of MWCNT incorporation on the enhancement of PLLA thermal stability. CONCLUSION: This study explored the thermal degradation behaviour of PLLA/MWCNT composites by observing the weight loss, molecular weight and mechanical properties during non‐isothermal and isothermal degradation. The incorporation of MWCNTs into the PLLA matrix enhanced considerably the mechanical properties and thermal stability. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Poly(amide-co-imide) (PAI)/multi-walled carbon nanotube (MWCNTs) composites were prepared by using solution mixing with ultrasonication excitation in order to investigate effects of MWCNTs on rheological properties and thermal curing behavior. Steady shear viscosity of the composite showed bell shaped curves with three characteristic patterns: shear thickening, shear thinning, and Newtonian plateau behavior. Both storage modulus and complex viscosity were increased due to higher molecular interaction than that of the pure PAI resin. Especially, hydrogen peroxide treated MWCNT/PAI composites had the highest storage modulus and complex viscosity. Glass transition temperature of the PAI/MWCNT composite was increased with increasing MWCNT content and thermal curing time since the mobility of PAI molecules was reduced as more constraints were generated in PAI molecular chains. It was found that thermal curing conditions of PAI/MWCNT composites are determined by considering effects of weight fraction and surface modification of MWCNTs on internal structure and thermal properties.  相似文献   

11.
The effect of glass fiber (GF) on the electrical resistivities of polyoxymethylene (POM)/maleic anhydride‐grafted polyethylene (MAPE)/multiwalled carbon nanotube (MWCNT) composites is investigated. The POM/MAPE/MWCNT composites at a MWCNT loading of 0.75% are nonconductive because most of MWCNTs are isolated in the MAPE islands, and their electrical resistivities decrease significantly after the addition of GF because of the formation of MAPE‐coated GF structure, which facilitates the formation of conductive paths and was confirmed by field emission scanning electron microscopy (FESEM). The formation of MAPE‐coated GF structure is attributed to the interaction between GF and MAPE during melt compounding, as contrasted by the uncoated GF using high‐density polyethylene (HDPE) instead of MAPE. Nonconductive POM/5–20% MAPE/0.75% MWCNT composites become conductive upon the addition of 20% GF. This preparation method for conductive materials can be generalized to POM/5–20% maleic anhydride‐grafted polypropylene (MAPP)/0.75% MWCNT composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41794.  相似文献   

12.
The high compatibility of fluorene‐based polyester (FBP‐HX) as a polymer matrix for multiwalled carbon nanotubes (MWCNTs) is discussed. A low surface resistivity due to the fine dispersion of MWCNTs in FBP‐HX and polycarbonate (PC) is reported. With a solution‐casting method, a percolation threshold with the addition of between 0.5 and 1.0 wt % MWCNTs was observed in the MWCNT/PC and MWCNT/FBP‐HX composites. Because of the coverage of FBP‐HX on the MWCNTs, a higher surface resistivity and a higher percolation ratio of the MWCNT/FBP‐HX composites were achieved compared with the values for the MWCNT/PC composites. In the MWCNT/FBP‐HX composites, MWCNTs covered with FBP‐HX were observed by scanning electronic microscopy. Because of the coverage of FBP‐HX on the MWCNTs, FBP‐HX interfered with the electrical pathway between the MWCNTs. The MWCNTs in FBP‐HX were covered with a 5‐nm layer of FBP‐HX, but the MWCNTs in the MWCNT/PC composites were in their naked state. MWCNT/PC sheets demonstrated the specific Raman absorption of the MWCNTs only with the addition of MWCNTs of 1 wt % or above because of the coverage of the surface of the composite sheet by naked MWCNTs. In contrast, MWCNT/FBP‐HX retained the behavior of the matrix resin until a 3 wt % addition of MWCNTs was reached because of the coverage of MWCNTs by the FBP‐HX resin, induced by its high wettability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A remarkable synergetic effect between the multi-graphene platelets (MGPs) and multi-walled carbon nanotubes (MWCNTs) in improving the mechanical properties and thermal conductivity of epoxy composites is demonstrated. Stacking of individual two-dimensional MGPs is effectively inhibited by introducing one-dimensional MWCNTs. Long and tortuous MWCNTs can bridge adjacent MGPs and inhibit their aggregation, resulting in a high contact area between the MGP/MWCNT structures and the polymer matrix. Scanning electron microscope images of the fracture surfaces of the epoxy matrix showed that MWCNT/MGP hybrid nanofillers exhibited higher solubility and better compatibility than individual MWCNTs and MGPs did. The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of the epoxy alone, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites over the epoxy compound. Thermal conductivity increased by 146.9% using GD400-MWCNT/MGP hybrid fillers and 23.9% for MGP fillers, compared to non-derivatised epoxy.  相似文献   

14.
Functionalization of multi-wall carbon nanotubes (MWCNTs) was achieved by grafting carboxyl groups and amino groups. Fourier transform infrared spectroscopy was used to detect the changes produced by functional groups on the surface of the MWCNTs. Three different MWCNTs were incorporated into epoxy resin and the friction and wear behavior of MWCNT/epoxy composites was investigated using a M-2000 wear testing machine at different sliding speeds under different applied loads. Scanning electron microscopy was used to observe the worn surfaces of the samples. The results indicated that the functional groups had been grafted on the surface of MWCNTs. Compared with neat epoxy, the composites with MWCNTs showed a lower friction coefficient and wear rate, and the wear rate decreased with the increase of MWCNT loading. Combining epoxy resin with MWCNTs is an efficient method to improve the wear resistance and decrease the coefficient of friction.  相似文献   

15.
Lan Lu  Shifeng Wang  Yinxi Zhang 《Carbon》2007,45(13):2621-2627
Styrene-butadiene-styrene tri-block copolymer (SBS) was reinforced with multi-walled carbon nanotubes (MWCNTs) by the interaction through melt mixing. The tensile strength of SBS/MWCNT composites increased with increasing MWCNT content. The interactions between SBS and MWCNTs were characterized by solubility of MWCNTs in tetrahydrofuran, dynamic mechanical analysis, X-ray photoelectron microscope, ultraviolet spectra and transmission electron microscopy. The results showed that there were interactions between MWCNTs and SBS occurred during melt mixing, leading to an improvement of the mechanical properties of SBS/MWCNT composites, as well as the homogeneous dispersion of MWCNTs in SBS. The interactions between MWCNTs and SBS were supposed to consist of the π-π interaction between MWCNTs and the phenyl groups of SBS, as well as the chemical bonding of polybutadiene segments with MWCNTs.  相似文献   

16.
Chain confinement in electrospun nanofibers of PET with carbon nanotubes   总被引:1,自引:0,他引:1  
Huipeng Chen 《Polymer》2009,50(3):872-64
Composite nanofibers of poly(ethylene terephthalate), PET, with multiwalled carbon nanotubes (PET/MWCNT) were prepared by the electrospinning method. Confinement, chain conformation, and crystallization of PET electrospun (ES) fibers were analyzed as a function of the weight fraction of MWCNTs. For the first time, we have characterized the rigid amorphous fraction (RAF) in polymer electrospun fibers, with and without MWCNTs. The addition of MWCNTs causes polymer chains in the ES fibers to become more extended, impeding cold crystallization of the fibers, resulting in more confinement of PET chains and an increase in the RAF. The fraction of rigid amorphous chains greatly increased with a small amount of MWCNT loading: with addition of 2% MWCNTs, RAF increased to 0.64, compared to 0.23 in homopolymer PET ES fibers. Spatial constraints also inhibit the folding of polymer chains, resulting in a decrease in crystallinity of PET. For fully amorphous PET/MWCNT composites, MWCNTs do not affect the chain conformation of PET in the ES fibers. For cold crystallized PET/MWCNT composite nanofibers, more trans conformers were formed with the addition of MWCNTs. The increase of RAF (chain confinement) is associated with an increase of the concentration of the trans conformers in the amorphous region as the MWCNT concentration increases in the semicrystalline nanofibers.  相似文献   

17.
Polymer/carbon nanotube nanocomposites have attracted high interest for a wide spectrum of applications, including antistatic packaging used to protect electronic devices against electrostatic discharge. Polytrimethylene terephthalate (PTT)/maleic-anhydride-grafted PTT (PTT-g-MA)/acrylonitrile butadiene styrene (ABS) blend-based multiwall carbon nanotubes (MWCNTs) nanocomposites were prepared through extrusion. It was conducted chemical functionalization on the MWCNTs by oxidation using nitric acid to introduce functional groups. The effect of the amount (0.5 or 1.0 wt%) and functionalization of MWCNTs on the nanocomposites was investigated. Despite the poor barrier properties of PTT/PTT-g-MA/ABS/MWCNT nanocomposites due to the presence of voids confirmed by scanning electron microscopy (SEM), the nanocomposites with functionalized MWCNT (MWCNTf) showed excellent barrier properties, indicating that the functionalization process improved the interaction between the MWCNTs and the matrix. The addition of MWCNTs into PTT/PTT-g-MA/ABS blend decreased the electrical resistivity by eight orders of magnitude. The use of MWCNTf may still disrupt the electrical network pathway and slightly decreasing the electrical resistivity, but the nanocomposites present the desired properties required for antistatic packaging.  相似文献   

18.
Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared using a melt‐blending procedure combining twin‐screw extrusion with centrifugal premixing. A homogeneous dispersion of MWCNTs throughout the matrix was revealed by scanning electron microscopy for the nanocomposites with MWCNT contents ranging from 0.5 to 8.0 wt %. The mechanical properties of PPS were markedly enhanced by the incorporation of MWCNTs. Halpin‐Tsai equations, modified with an efficiency factor, were used to model the elastic properties of the nanocomposites. The calculated modulus showed good agreement with the experimental data. The presence of the MWCNTs exhibited both promotion and retardation effects on the crystallization of PPS. The competition between these two effects results in an unusual change of the degree of crystallinity with increasing MWCNT content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A method is reported that involves the bulk polymerization of styrene monomer in the presence of multi-wall carbon nanotubes (MWCNTs) and polystyrene (PS) beads, for the preparation of MWCNT/PS conducting composites with a significantly lower (0.08 wt.% MWCNT) percolation threshold than previously reported. Thus, the conductivities of 7.62 × 10−5 and 1.48 × 10−3 S cm−1 were achieved in the MWCNT/PS composites through homogeneous dispersion of 0.08 and 0.26 wt.% CNTs, respectively in the in situ polymerized PS region by using 70 wt.% PS beads during the polymerization. The extent of dispersion and location of the MWCNTs in the PS matrix has been investigated with a scanning and transmission electron microscopy. The conductivity of the composites was increased with increasing wt.% of the PS beads at a constant CNT loading, indicating the formation of a more continuous network structure of the CNTs in PS matrix.  相似文献   

20.
Poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) composites were prepared by in situ polymerization. To improve the dispersion of MWCNTs in the PET matrix, functionalized MWCNTs having acid groups (acid‐MWCNTs) and acetic groups (acetic‐MWCNTs) on their surfaces were used. The functional groups were confirmed by infrared spectrometry. Scanning electron microscopy showed that acetic‐MWCNTs had a better dispersion in the PET matrix than pristine MWCNTs and acid‐MWCNTs. A reaction between PET and acetic‐MWCNTs was confirmed by a shift of the Raman G band to a higher frequency and an increase of the complex viscosity in the rheological properties. The composites containing functionalized MWCNTs showed a large increase in their tensile strengths and moduli. The values of the strengths and moduli of the PET/acetic‐MWCNT composites were higher than those of the PET/acid‐MWCNT composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号