首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide‐nanowire field‐effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the “on‐currents” achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical‐gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all‐solid‐state FETs with outstanding performance; the field‐effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single‐nanowire transistor are 62 cm2/Vs, 107, 155 μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically‐gated field‐effect transistor (EG FET) devices is supported by their long‐term stability in air. Moreover, due to the good conductivity (≈10?2 S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut‐off frequency in excess of 100 kHz is measured for in‐plane FETs with large gate‐channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top‐gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all‐solution processed and high throughput techniques.  相似文献   

2.
Solution processing of polymer semiconductors provides a new paradigm for large‐area electronics manufacturing on flexible substrates, but it also severely restricts the realization of interesting advanced device architectures, such as lateral heterostructures with defined interfaces, which are easily accessible with inorganic materials using photolithography. This is because polymer semiconductors degrade, swell, or dissolve during conventional photoresist processing. Here a versatile, high‐resolution photolithographic method is demonstrated for patterning of polymer semiconductors and exemplify this with high‐performance p‐type and n‐type field‐effect transistors (FETs) in both bottom‐ and top‐gate architectures, as well as ambipolar light‐emitting field‐effect transistors (LEFETs), in which the recombination zone can be pinned at a photolithographically defined lateral heterojunction between two semiconducting polymers. The technique therefore enables the realization of a broad range of novel device architectures while retaining optimum materials performance.  相似文献   

3.
The mass production technique of gravure contact printing is used to fabricate state‐of‐the art polymer field‐effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure‐printed: the semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom‐contact/top‐gate geometry, an on/off ratio of >104 and a mobility of 0.04 cm2 V?1 s?1 are achieved. This rivals the best top‐gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40 m min?1 on a flexible polymer substrate demonstrates that very high‐volume, reel‐to‐reel production of organic electronic devices is possible.  相似文献   

4.
While many high‐performance polymer semiconductors are reported for organic field‐effect transistors (OFETs), most require a high‐temperature postdeposition annealing of channel semiconductors to achieve high performance. This negates the fundamental attribute of OFETs being a low‐cost alternative to conventional high‐cost silicon technologies. A facile solution process is developed through which high‐performance OFETs can be fabricated without thermal annealing. The process involves incorporation of an incompatible hydrocarbon binder or wax into the channel semiconductor composition to drive rapid phase separation and instantaneous crystallization of polymer semiconductor at room temperature. The resulting composite channel semiconductor film manifests a nano/microporous surface morphology with a continuous semiconductor nanowire network. OFET mobility of up to about 5 cm2 V?1 s?1 and on/off ratio ≥ 106 are attained. These are hitherto benchmark performance characteristics for room‐temperature, solution‐processed polymer OFETs, which are functionally useful for many impactful applications.  相似文献   

5.
In organic electronics solution‐processable n‐channel field‐effect transistors (FETs) matching the parameters of the best p‐channel FETs are needed. Progress toward the fabrication of such devices is strongly impeded by a limited number of suitable organic semiconductors as well as by the lack of processing techniques that enable strict control of the supramolecular organization in the deposited layer. Here, the use of N,N′‐bis(4‐n‐butylphenyl)‐1,4,5,8‐naphthalenetetracarboxylic‐1,4:5,8‐bisimide (NBI‐4‐n‐BuPh) for fabrication of n‐channel FETs is described. The unidirectionally oriented crystalline layers of NBI‐4‐n‐BuPh are obtained by the zone‐casting method under ambient conditions. Due to the bottom‐contact, top‐gate configuration used, the gate dielectric, Parylene C, also acts as a protective layer. This, together with a sufficiently low LUMO level of NBI‐4‐n‐BuPh allows the fabrication and operation of these novel n‐channel transistors under ambient conditions. The high order of the NBI‐4‐n‐BuPh molecules in the zone‐cast layer and high purity of the gate dielectric yield good performance of the transistors.  相似文献   

6.
A solution processed n‐channel zinc oxide (ZnO) field effect transistor (FET) was fabricated by simple dip coating and subsequent heat treatment of a zinc acetate film. The field effect mobility of electrons depends on ZnO grain size, controlled by changing the number of coatings and zinc acetate solution concentration. The highest electron mobility achieved by this method is 7.2 cm2 V?1 s?1 with On/Off ratio of 70. This electron mobility is higher than for the most recently reported solution processed ZnO transistor. We also fabricated bilayer transistors where the first layer is ZnO, and the second layer is pentacene, a p‐channel organic which is deposited by thermal evaporation. By changing the ZnO grain size (or thickness) this type of bilayer transistor shows p‐channel, ambipolar and n‐channel behavior. For the ambipolar transistor, well balanced electron and hole mobilities are 7.6 × 10?3 and 6.3 × 10?3 cm2 V?1 s?1 respectively. When the ZnO layer is very thin, the transistor shows p‐channel behavior with very high reversible hysteresis. The nonvolatile tuning function of this transistor was investigated.  相似文献   

7.
Conjugated polymer semiconductors P1 and P2 with bithienopyrroledione (bi‐TPD) as acceptor unit are synthesized. Their transistor and photovoltaic performances are investigated. Both polymers display high and balanced ambipolar transport behaviors in thin‐film transistors. P1‐ based devices show an electron mobility of 1.02 cm2 V?1 s?1 and a hole mobility of 0.33 cm2 V?1 s?1, one of the highest performance reported for ambipolar polymer transistors. The electron and hole mobilities of P2 transistors are 0.36 and 0.16 cm2 V?1 s?1, respectively. The solar cells with PC71BM as the electron acceptor and P1/P2 as the donor exhibit a high V oc about 1.0 V, and a power conversion efficiency of 6.46% is observed for P1‐ based devices without any additives and/or post treatment. The high performance of P1 and P2 is attributed to their crystalline films and short π–π stacking distance (<3.5 Å). These results demonstrate (1) bi‐TPD is an excellent versatile electron‐deficient unit for polymer semiconductors and (2) bi‐TPD‐based polymer semiconductors have potential applications in organic transistors and organic solar cells.  相似文献   

8.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

9.
Colloidally synthesized nanomaterials are among the promising candidates for future electronic devices due to their simplicity and the inexpensiveness of their production. Specifically, colloidal nanosheets are of great interest since they are conveniently producible through the colloidal approach while having the advantages of two‐dimensionality. In order to employ these materials, according transistor behavior should be adjustable and of high performance. It is shown that the transistor performance of colloidal lead sulfide nanosheets is tunable by altering the surface passivation, the contact metal, or by exposing them to air. It is found that adding halide ions to the synthesis leads to an improvement of the conductivity, the field‐effect mobility, and the on/off ratio of these transistors by passivating their surface defects. Superior n‐type behavior with a field‐effect mobility of 248 cm2 V?1 s?1 and an on/off ratio of 4 × 106 is achieved. The conductivity of these stripes can be changed from n‐type to p‐type by altering the contact metal and by adding oxygen to the working environment. As a possible solution for the post‐Moore era, realizing new high‐quality semiconductors such as colloidal materials is crucial. In this respect, the results can provide new insights which helps to accelerate their optimization for potential applications.  相似文献   

10.
Although high carrier mobility organic field‐effect transistors (OFETs) are required for high‐speed device applications, improving the carrier mobility alone does not lead to high‐speed operation. Because the cut‐off frequency is determined predominantly by the total resistance and parasitic capacitance of a transistor, it is necessary to miniaturize OFETs while reducing these factors. Depositing a dopant layer only at the metal/semiconductor interface is an effective technique to reduce the contact resistance. However, fine‐patterning techniques for a dopant layer are still challenging especially for a top‐contact solution‐processed OFET geometry because organic semiconductors are vulnerable to chemical damage by solvents. In this work, high‐resolution, damage‐free patterning of a dopant layer is developed to fabricate short‐channel OFETs with a dopant interlayer inserted at the contacts. The fabricated OFETs exhibit high mobility exceeding 10 cm2 V?1 s?1 together with a reasonably low contact resistance, allowing for high frequency operation at 38 MHz. In addition, a diode‐connected OFET shows a rectifying capability of up to 78 MHz at an applied voltage of 5 V. This shows that an OFET can respond to the very high frequency band, which is beneficial for long‐distance wireless communication.  相似文献   

11.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

12.
Low‐cost printable field effect transistors (FETs) are typically associated with slow switching characteristics. Dynamic response of polymer field effect transistors (PFETs) is a manifestation of time scales involved in processes such as dielectric polarization, structural relaxation, and transport via disordered‐interfacial states. A range of dielectrics and semiconductors are studied to arrive at a parameter which serves as a figure of merit and quantifies the different processes contributing to the switching response. A cross‐over from transport limiting factors to dielectric limiting factors in the dynamics of PFETs is observed. The dielectric limited regime in the PFET dynamics is tapped in to explore high speed processes, and an enhancement of switching speed by three orders of magnitude (from 300 μs to 400 ns) is observed at channel lengths which can be accessed by low cost printing methods. The device structure utilizes polymer‐ferroelectrics (FE) as the dielectric layer and involves a fabrication‐procedure which assists in circumventing the slow dynamics within the bulk of FE. This method of enhancing the dynamic response of PFETs is universally applicable to all classes of disordered‐FE.  相似文献   

13.
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed.  相似文献   

14.
Revealing the intrinsic electrical properties is the basis of understanding new functional materials and developing their applications. However, in nonideal field‐effect transistors (FETs), conventional current–voltage characterizations do not accurately probe charge transport, particularly for newly developed semiconductors. Here, a generalized gated four‐probe (G‐GFP) technique is developed, which detects dynamic changes in carrier accumulation and transport. The technique is suitable for exploring the intrinsic properties of semiconductors in FETs with arbitrary contacts and in any operational regimes above the threshold. Application to simulated transistors confirms its accuracy in probing the evolution of channel potential, drift field, and gate‐dependent carrier mobility for devices with a contact‐limited operation and disordered semiconductors. Comparative experiments are performed based on FETs with various materials, device structures, and operational temperatures. The G‐GFP technique proves to exclude the various injection properties, to detect in situ how carriers are accumulated, and to clarify carrier mobility of the semiconductors. In particular, the well‐known “double‐slope” features in the current–voltage relations are controllably generated and their origins are identified. The approach could be used to explore electronic properties of newly developed materials such as organic, oxide, or 2D semiconductors.  相似文献   

15.
Since transition metal dichalcogenide (TMD) semiconductors are found as 2D van der Waals materials with a discrete energy bandgap, many 2D‐like thin field effect transistors (FETs) and PN diodes are reported as prototype electrical and optoelectronic devices. As a potential application of display electronics, transparent 2D FET devices are also reported recently. Such transparent 2D FETs are very few in report, yet no p‐type channel 2D‐like FETs are seen. Here, 2D‐like thin transparent p‐channel MoTe2 FETs with oxygen (O2) plasma‐induced MoOx/Pt/indium‐tin‐oxide (ITO) contact are reported for the first time. For source/drain contact, 60 s short O2 plasma and ultrathin Pt‐deposition processes on MoTe2 surface are sequentially introduced before ITO thin film deposition and patterning. As a result, almost transparent 2D FETs are obtained with a decent mobility of ≈5 cm2 V?1 s?1, a high ON/OFF current ratio of ≈105, and 70% transmittance. In particular, for normal MoTe2 FETs without ITO, O2 plasma process greatly improves the hole injection efficiency and device mobility (≈60 cm2 V?1 s?1), introducing ultrathin MoOx between Pt source/drain and MoTe2. As a final device application, a photovoltaic current modulator, where the transparent FET stably operates as gated by photovoltaic effects, is integrated.  相似文献   

16.
Recently, a printable power source that can be implemented on demand in integrated circuitries has gained tremendous attention to facilitate next‐generation, form‐factor free, miniaturized electronic systems. Among various energy storage units, a solid‐state micro‐supercapacitor with in‐plane device architecture has been recognized as a viable candidate with characteristic advantages of long cycle life‐time, high frequency response, and fast charge/discharge rate. However, to date, high performance, all‐printed micro‐supercapacitors have rarely been reported owing to an absence of printable current collector materials that can sustain high voltage conditions. In this study, a multidimensional printable particle mixture comprising Ni nanoparticles, Ni flakes, and a photoreactive polymer, polyvinylpyrrolidone is proposed. The highly conductive, printed metallic current collector is generated with a conductive surface passivation layer in a timescale of 10?3 s by flash‐light sintering process. It is revealed that the resulting metallic current collector is stable at a voltage as high as 3 V in the carbon electrode‐based device, enabling the fabrication of an all‐printed solid‐state micro‐supercapacitor with an areal energy density of 79–23 mJ cm?2 at an areal power density of 0.4–12.8 mW cm?2. Arbitrarily designed device circuits can be generated on demand simply by using a digitally programmable printing process, without incorporation of additional interconnection lines.  相似文献   

17.
Two types of transition metal dichalcogenide (TMD) transistors are applied to demonstrate their possibility as switching/driving elements for the pixel of organic light‐emitting diode (OLED) display. Such TMD materials are 6 nm thin WSe2 and MoS2 as a p‐type and n‐type channel, respectively, and the pixel is thus composed of external green OLED and nanoscale thin channel field effect transistors (FETs) for switching and driving. The maximum mobility of WSe2‐FETs either as switch or as driver is ≈30 cm2 V?1 s?1, in linear regime of the gate voltage sweep range. Digital (ON/OFF‐switching) and gray‐scale analogue operations of OLED pixel are nicely demonstrated. MoS2 nanosheet FET‐based pixel is also demonstrated, although limited to alternating gray scale operation of OLED. Device stability issue is still remaining for future study but TMD channel FETs are very promising and novel for their applications to OLED pixel because of their high mobility and I D ON/OFF ratio.  相似文献   

18.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

19.
Flexible electronics with highly thermal stability and mechanical strength are highly needed in advanced transportation systems. Semiconducting single‐walled carbon nanotubes are one of the leading active materials for such thin film transistors because they are printable, flexible, thermally stable, and mechanically strong. Dielectrics with large capacitance are another major component, and polymer electrolytes are printed for flexible electronics, but they suffer from poor mechanical strength and low operating temperature. Here, a transparent, mechanically flexible, and thermally stable polyfluorinated electrolyte (PFE) is developed with high capacitance by curing printed polyfluorinated resin (PFR) and ionic liquid composite at high temperature. PFE inherits the mechanical flexibility and thermal stability from PFR. The immobilized ionic liquid inside the porous structures of PFE accounts for the high capacitance. With top‐gated PFE, fully printed electronically pure single‐chirality (6,5) single‐walled carbon nanotube (SWCNT) thin‐film transistors (TFTs) exhibit air stable, consistent, and reliable ambipolar characteristics with high transconductance (1 mS) and small subthreshold swing (<0.15 V dec?1) at low voltage in ambient air for p‐type and n‐type carriers, and >105 ON/OFF current ratio for both carriers under low operation voltage.  相似文献   

20.
Charge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号