首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Monolithically integrated hybrid tandem solar cells (TSCs) that combine solution-processed colloidal quantum dot (CQD) and organic molecules are a promising device architecture, able to complement the absorption across the visible to the infrared. However, the performance of organic/CQD hybrid TSCs has not yet surpassed that of single-junction CQD solar cells. Here, a strategic optical structure is devised to overcome the prior performance limit of hybrid TSCs by employing a multibuffer layer and a dual near-infrared (NIR) absorber. In particular, a multibuffer layer is introduced to solve the problem of the CQD solvent penetrating the underlying organic layer. In addition, the matching current of monolithic TSCs is significantly improved to 15.2 mA cm−2 by using a dual NIR organic absorber that complements the absorption of CQD. The hybrid TSCs reach a power conversion efficiency (PCE) of 13.7%, higher than that of the corresponding individual single-junction cells, representing the highest efficiency reported to date for CQD-based hybrid TSCs.  相似文献   

5.
6.
7.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm?2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm?2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.  相似文献   

8.
9.
10.
11.
In this work, a highly efficient parallel connected tandem solar cell utilizing a nonfullerene acceptor is demonstrated. Guided by optical simulation, each of the active layer thicknesses of subcells are tuned to maximize its light trapping without spending intense effort to match photocurrent. Interestingly, a strong optical microcavity with dual oscillation centers is formed in a back subcell, which further enhances light absorption. The parallel tandem device shows an improved photon‐to‐electron response over the range between 450 and 800 nm, and a high short‐circuit current density (J SC) of 17.92 mA cm?2. In addition, the subcells show high fill factors due to reduced recombination loss under diluted light intensity. These merits enable an overall power conversion efficiency (PCE) of >10% for this tandem cell, which represents a ≈15% enhancement compared to the optimal single‐junction device. Further application of the designed parallel tandem configuration to more efficient single‐junction cells enable a PCE of >11%, which is the highest efficiency among all parallel connected organic solar cells (OSCs). This work stresses the importance of employing a parallel tandem configuration for achieving efficient light harvesting in nonfullerene‐based OSCs. It provides a useful strategy for exploring the ultimate performance of organic solar cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号