首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermoplastic elastomer (TPE) nanocomposite based on polypropylene (PP), acrylonitrile–butadiene rubber (NBR), and a nanoclay (NC) was prepared in a laboratory mixer with a 54/40/6 weight ratio. The effects of NC on the thermal properties, crystalline structure, and phase morphology of the TPE nanocomposite were studied in this work. The results obtained from the nonisothermal crystallization of PP, PP/NBR, and PP/NBR/NC, which was carried out with differential scanning calorimetry, revealed that the overall rate of crystallization of PP decreased with the addition of NBR to PP and increased when NC was incorporated into the nanocomposite. In addition, the crystallite size distribution was more uniform for the PP phase crystallized in the nanocomposite versus the PP itself. Also, although the PP in the reference blend (PP/NBR) crystallized only in the α form, the crystalline structure of the PP incorporated into the nanocomposite was a mixture of α‐ and γ‐crystalline forms. The effects of NC on the phase morphology of PP/NBR blends prepared with three different cooling methods (quenching in liquid nitrogen, cooling between two metal plates at room temperature, and molding at a high temperature in a hot press) were studied. For the samples quenched in liquid nitrogen or cooled between metal plates, a particulate–cocontinuous morphology formed. However, for the samples prepared under a hot press, a laminar‐like morphology was observed. In all three cases, a similar particulate–cocontinuous morphology formed for the reference blend, but the rubber inclusions were always smaller than those of the TPE nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
To improve the interaction between syndiotactic polypropylene (SPP) and fibrous cellulose (FC), the effects of the addition of maleated polypropylene (MAPP) and FC surface modification with 3‐aminopropyltriethoxysilane (APTES) on SPP/FC composites were studied with respect to the morphology and the tensile properties. The addition of MAPP brought about an improvement in the interfacial adhesion between SPP and FC according to scanning electron microscopy observations and tensile testing. This improvement was, however, less effective than the improvement in the interfacial adhesion between isotactic polypropylene (IPP) and FC. SPP and MAPP partially or microscopically phase‐separated because of the IPP‐like polymer chain structure of MAPP. With respect to the compatibility between SPP and FC, FC surface modification with APTES was more suitable. The increase in Young's modulus was remarkable in the SPP/silanized FC composite with APTES. The tensile strength of the SPP/silanized FC composite with APTES was, however, considerably lower than that of the SPP/FC/MAPP composite. These results suggest that interfacial improvement between SPP and FC requires a compatibilizer or a surface modifier with a suitable primary structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

4.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
We studied tensile behavior of low‐molecular‐weight (MW) polypropylene (PP)/ethylene–propylene rubber (EPR; 70/30) blends from the viewpoint of the MWs of PP and EPR and the compatibility between PP and EPR. The value of the melt flow rate of PP varied from 30 to 700 g/10 min at 230°C. We studied the compatibility between PP and EPR by varying the propylene content in EPR (27 and 68 wt %). At the initial elongation stage, crazes were observed in all blends. When blends included EPR with 27 wt % propylene, the elongation at break of the low‐MW PP improved little. The blends with EPR and 68 wt % propylene content were elongated further beyond their yielding points. The elongation to rupture was increased with increasing MW of EPR. Molecular orientation of the low‐MW PP was manifested by IR dichroism measurements and X‐ray diffraction patterns. The blends of low‐MW PP and EPR could be elongated by the partial dissolution of EPR of high‐MW in the PP amorphous phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 46–56, 2002  相似文献   

6.
A microdeformation of a simple polymer blend of polypropylene (PP) and ethylene butene rubber (EBR) was investigated in this study. Injection molding‐induced morphology close to the surface was analyzed by transmission electron microscope, polarizing optical microscope, and Fourier transform IR spectroscopy. Breakup and coalescence of EBR particles scarcely occurred during the injection process. The EBR particles near the surface were observed as continuous fibers and were gradually changing to the ellipsoidal shape in the depth direction. The morphology in an injection molded specimen was related to depth profiles of mechanical factors, which were microhardness and shear stress measured by a Vickers and a Knoop microindenter and “Surface and Interface Cutting Analysis System,” respectively. Crystal structure of PP matrix affected to the microdeformation more strongly than that of EBR phase. The large oriented EBR domains disconnected continuity of the PP matrix and acted as a weak layer in the specimens. Finally, cohesive fracture occurred in the peel test of painted PP/EBR was discussed from a microdeformation point of view. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The morphologies of the fracture surface under impact and flexural testing of Mg(OH)2/Polypropylene (PP) composites and their modified composites were investigated by scanning electron microscopy. Experimental results indicated that addition of functionalized polypropylene (FPP) and acrylic acid (AA) and the formation of in situ FPP changed the fracture morphologies of Mg(OH)2/PP composites. We believe that addition of these modifiers improved the interfacial interaction and enhanced the interface adhesion between the particle and the matrix in Mg(OH)2/PP composites. The degree of improvement was more significant in Mg(OH)2/PP composites modified by the formation of in situ FPP. At low Mg(OH)2 content, 2 phr AA exhibited a marked effect, but at high Mg(OH)2 content, 4 phr AA afforded good effect. Due to the improved interface adhesion by interface interactions the fracture mechanism transformed from interface debonded fracture into a matrix fracture. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2148–2159, 2003  相似文献   

8.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
In this paper, the polypropylene was functionalized by isocyanate silane coupling agent grafted polypropylene (IS-g-PP), various characterization methods were conducted to evaluate the interfacial compatibility of WF/PP. The results indicated that IS-g-PP remarkably enhanced the interfacial adhesion between WF and PP with improved mechanical property, tensile strength was improved by 96.1%, and flexural strength was also increased apparently. According to the DSC results, the crystallization temperature of PP was decreased due to its enhanced interfacial adhesion. Most importantly, the use of IS-g-PP reinforced the storage modulus, loss modulus, and complex viscosity of WF/PP. These results demonstrated that IS-g-PP enhanced the interfacial interaction, and the mobility of PP chain was restrained, and was further confirmed by SEM analysis.  相似文献   

10.
The volume resistivity and percolation thresholds of carbon black (CB) filled polypropylene (PP), PP/epoxy, and PP/epoxy/glass fiber (GF) composites were measured. The morphology of these conductive polymer composites was studied with scanning electron microscopy (SEM). The effects of the GF and epoxy contents on the volume resistivity were also investigated. The PP/epoxy/GF/CB composite exhibited a reduced percolation threshold, in comparison with that of the PP/CB and PP/epoxy/CB composites. At a given CB content, the PP/epoxy/GF/CB composite had a lower volume resistivity than the PP/CB and PP/epoxy/CB composites. SEM micrographs showed that CB aggregates formed chainlike structures and dispersed homogeneously within the PP matrix. The addition of the epoxy resin to PP resulted in the preferential location of CB in epoxy, whereas in the PP/epoxy/GF multiphase blends, because of the good affinity of CB to epoxy and of epoxy to GF, CB particles were located in the epoxy phase coated on GF. The decreased percolation threshold and volume resistivity indicated that conductive paths existed in the PP/epoxy/GF/CB composite. The conductive paths were probably formed through the interconnection of GF. Appropriate amounts of GF and epoxy should be used to decrease the volume resistivity and provide sufficient epoxy coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1142–1149, 2005  相似文献   

11.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

13.
An experimental study on crystal structure and morphology of isotactic polypropylene (iPP) subjected to vibration was carried out on a laboratory apparatus. Crystallite size, crystal structure, and crystallinity of iPP under vibration or nonvibration were investigated through differential scanning calorimeter (DSC), wide angle X‐ray diffraction (WAXD), and polarized optical microscopy (POM). The results reveal that at high cooling rate, the crystallinity of samples under vibration decreases, and at low cooling rate it remains constant because of chain relaxation. On the other hand, the sizes of the iPP spherulites under vibration decrease as compared with those without vibration. Taking the relaxation of the iPP chain into consideration, we believe that the influence of vibration conditions on the main α‐form of the iPP crystal is rather complex. An obvious increase of β‐form content in the crystal phase results from the imposition of vibration. The results indicate that the content of β‐iPP is dependent on vibration amplitude and time. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2187–2195, 2004  相似文献   

14.
The effect of the delignification of hornbeam fibers on the mechanical properties of wood fiber–polypropylene (PP) composites was studied. Original fibers and delignified fibers at three levels of delignification were mixed with PP at a weight ratio of 40:60 in an internal mixer. Maleic anhydride (0.5 wt %) as the coupling agent and dicumyl peroxide (0.1 wt %) as the initiator were applied. The produced composites were then hot‐pressed, and specimens for physical and mechanical testing were prepared. The results of the properties of the composite materials indicate that delignified fibers showed better performance in the enhancement of tensile strength and tensile modulus, whereas the hardness of the composites was unaffected by delignification. Delignified fibers also exhibited better water absorption resistance. Notched impact strength was higher for delignified fiber composites, but it was reduced at higher delignification levels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4759–4763, 2006  相似文献   

15.
Ternary composites of polypropylene (PP), polydimethylsiloxane (PDMS) elastomer, and nano‐SiO2, prepared with three different mixing sequences, were studied for dispersion morphology and its effect on the crystallization of PP and the mechanical properties. The mixing sequence produced a significant effect on the dispersion morphology and, thereby, on the mechanical properties of the composites. A two‐step mixing sequence, in which nano‐SiO2 was added in the second step to the PP/PDMS binary system, produced a significant encapsulation of nano‐SiO2 by PDMS, and this, in turn, resulted in the poor modulus and impact strength of the composite. A one‐step mixing sequence of all three components produced a separated dispersion of PDMS and nano‐SiO2 phases in the PP matrix with the occurrence of a fine band of nano‐SiO2 particles at the boundaries of the PDMS domains and the presence of some nano‐SiO2 filler particles inside the PDMS domains. This one‐step mixing sequence produced an improvement in the tensile modulus but a decrease in the impact strength with increasing nano‐SiO2 content. In the third sequence of mixing, which involved a two‐step mixing sequence through the addition of PDMS in the second step to the previously prepared PP/nano‐SiO2 binary system, the morphology of the dispersion showed separately dispersed PDMS and nano‐SiO2 phases with a loose network of nano‐SiO2 particles surrounding the PDMS domains. This latter series of ternary composites had the highest impact strength and exhibited high shear deformation under tensile and impact conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
17.
The nonisothermal crystallization, melting behavior, and morphology of blends of polypropylene (PP) and a metallocene‐catalyzed polyethylene (mPE) elastomer were studied with differential scanning calorimetry, scanning electron microscopy, polarized optical microscopy, and X‐ray diffraction. The results showed that PP and mPE were partially miscible and could form some cocrystallization, although the extent was very small. A modified Avrami analysis and the Mo method were used to analyze the nonisothermal crystallization kinetics of the blends. The values of the Avrami exponent indicated that the crystallization nucleation of the blends was homogeneous, the growth of the spherulites was three‐dimensional, and the crystallization mechanism of PP was not affected by mPE. The crystallization activation energy was estimated with the Kissinger method. Interesting results were obtained with the modified Avrami analysis and Mo and Kissinger methods, and the conclusions were in good agreement. The addition of less mPE increased the overall crystallization rate of PP. The relationship between the composition and morphology of the blends was examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1203–1210, 2004  相似文献   

18.
The influence of trans‐polyoctylene rubber (TOR) on the mechanical properties, glass‐transition behavior, and phase morphology of natural rubber (NR)/acrylonitrile–butadiene rubber (NBR) blends was investigated. With an increased TOR level, hardness, tensile modulus, and resilience increased, whereas tensile strength and elongation at break tremendously decreased. According to differential scanning calorimetry and dynamic mechanical analysis, there were two distinct glass‐transition temperatures for a 50/50 NR/NBR blend, indicating the strongly incompatible nature of the blend. When the TOR level was increased, the glass transition of NBR was strongly suppressed. NBR droplets of a few micrometers were uniformly dispersed in the continuous NR phases in the NR/NBR blends. When TOR was added to a 50/50 NR/NBR blend, TOR tended to be located in the NR phase and in some cases was positioned at the interfaces between the NBR and NR phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 125–134, 2002  相似文献   

19.
The effects of the bark content on the water absorption and thickness swelling of wood–plastic composites prepared from polypropylene, wood flour, and bark flour were studied. Samples were made with a laboratory twin‐screw extruder. The results showed that among composites free of maleic anhydride polypropylene, those composites containing a higher bark flour content exhibited lower water absorption and lower thickness swelling. Maleic anhydride polypropylene reduced water absorption and thickness swelling in composites containing wood flour and a lower content of bark flour but had no influence on the hygroscopic properties of composites made with higher bark contents. Adding maleic anhydride polypropylene had no effect on the water diffusion coefficients and swelling rate parameters of composites made with a higher bark flour content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A maleic anhydride grafted propylene–butadiene copolymer (MPPB) was prepared. Fourier transform infrared spectroscopy and 1H‐NMR results indicate that the maleic anhydride molecules reacted with the double bond in the butadiene unit of the propylene–butadiene copolymer (PPB), and the grafting percentage increased with the butadiene content in the initial copolymer. The gel permeation chromatography results show that the introduction of butadiene in the copolymer prevented the degradation of PPB. The MPPB was applied in polypropylene (PP)/styrene‐butadiene‐styrene triblock copolymer (SBS)/organophilic montmorillonite (OMMT) composites as a compatibilizer. In the presence of 10‐phr MPPB, the impact strength of the composite was improved by about 20%. X‐ray diffraction patterns indicated the formation of the β‐phase crystallization of PP in the presence of MPPB, and a significant decrease in the spherulite size was observed. Transmission electron microscopy (TEM) images showed that the OMMT was better dispersed in the matrix upon the inclusion of MPPB. A better distribution of the rubber phase and a rugged fracture surface were observed in the scanning electron microscopy images as the MPPB proportion was increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号