首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, ethylene‐vinyl alcohol copolymer (EVOH) nanocomposites were prepared by melt compounding both plant cellulose nanowhiskers (CNW) and bacterial cellulose nanowhiskers (BCNW) as nanofillers. Electrospinning and a “dissolution precipitation” method were used as strategies for the incorporation of CNW in EVOH before melt compounding with the aim of enhancing the degree of dispersion of the nanocrystals when compared with direct melt‐mixing of the freeze‐dried product with the polymer. As revealed by morphological characterization, the proposed preincorporation methods led to a significant improvement in the dispersion of the nanofiller in the final nanocomposite films. Furthermore, it was possible to incorporate concentrations as high as 4 wt % BCNW without causing significant agglomeration of the nanofiller, whereas increasing the CNW concentration up to 3 wt % induced agglomeration. Finally, DSC studies indicated that the crystalline content was significantly reduced when the incorporation method led to a poor dispersion of the nanocrystals, whereas high‐nanofiller dispersion resulted in thermal properties similar to those of the neat EVOH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In the present work, the crystallinity and crystalline morphology, thermal stability, water barrier, and mechanical properties of ethylene vinyl alcohol copolymer (EVOH) nanocomposites prepared by melt compounding and incorporating both plant (CNW) and bacterial cellulose nanowhiskers (BCNW) are reported. An improvement in the water barrier performance was observed, that is, 67% permeability drop, only for the microcomposite sample incorporating 2 wt % of bacterial cellulose fibrils. No significant differences in the water‐barrier properties of the nanocomposites generated through the two studied preincorporation methods were observed despite the fact that an excellent dispersion was observed in the previous study. On the other hand, direct melt‐mixing of the freeze‐dried nanofiller with EVOH resulted in increased water permeation. The aggregation of the filler in the latter nanocomposite was also ascribed to the detrimental effect on the mechanical properties. Interestingly, by using the precipitation method, an increase in the elastic modulus and tensile strength of ~36 and 22%, respectively, was observed for a 3 wt % BCNW loading, which was thought to coincide with the percolation threshold. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Bio‐based continuous fibers were processed from polylactic acid (PLA) and cellulose nanowhiskers (CNWs) by melt spinning. Melt compounding of master batches of PLA with 10 wt % CNWs and pure PLA was carried out using a twin‐screw extruder in which compounded pellets containing 1 and 3 wt % of CNWs were generated for subsequent melt spinning. The microscopy studies showed that the fiber diameters were in the range of 90‐95 µm, and an increased surface roughness and aggregations in the fibers containing CNWs could be detected. The addition of the CNWs restricted the drawability of the fibers to a factor of 2 and did not affect the fiber stiffness or strength, but resulted in a significantly lower strain and slightly increased crystallinity. Furthermore, CNWs increased the thermal stability, creep resistance and reduction in thermal shrinkage of PLA fibers, possibly indicating a restriction of the polymer chain mobility due to the nanoscale additives. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Polyamide‐6 (PA‐6)/boehmite alumina (BA) nanocomposites were prepared via direct melt compounding. Structural, thermal and dielectric properties of ‘as‐received’ (including moisture) and ‘dried’ (thermally treated) specimens were examined. The BA nanofiller was homogeneously dispersed in the PA‐6 matrix. XRD and FTIR revealed that crystallization of PA‐6 in the γ phase was favoured over α phase with increasing BA content. The crystallinity index (CI) and the percentage of α and γ phases were also evaluated. Dried specimens exhibited a lower CI than as‐received specimens while the CI decreased with the addition of filler. Broadband dielectric spectroscopy revealed the presence of γ, β and α relaxations, the Maxwell–Wagner–Sillars effect and the contribution of conductivity relaxation in the as‐received samples. The drying procedure unmasked a double feature of both β and α modes. The results of the complementary techniques were analysed and the effects of moisture and/or the incorporation of BA nanofiller on the microstructure of the PA‐6 matrix are disclosed. © 2019 Society of Chemical Industry  相似文献   

5.
Daehwan Cho 《Polymer》2011,52(20):4600-4609
Nylon 6 (N6) fibers have been fabricated via two different electrospinning schemes, from solution of N6 and formic acid at room temperature as well as from N6 melt at elevated temperature. The crystal structures of electrospun N6 fibers from solution and melt, and the annealing effect on the structures were studied by using various techniques. Combined analysis of the differential scanning calorimetry (DSC) at various heating rates, temperature-dependent X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy indicates that N6 fibers from melt predominantly exhibit the meta-stable γ-crystalline forms and low molecular orientation, while solution electrospun fibers from slowly evaporating solvent show both α- and γ-form crystals and higher degree of molecular orientation. At high annealing temperature, the meta-stable γ-crystals in melt electrospun fibers easily transform into thermodynamically stable α-form crystals, while crystals in solution electrospun fibers exhibit higher thermal stability. Nonisothermal modeling and in-situ measurements of jet temperature indicate that rapid quenching due to enhanced heat transfer by electrohydrodynamically driven air flow near the jet is responsible for the less stable γ-crystals and lower degree of molecular orientation in melt electrospun fibers.  相似文献   

6.
Rodlike poly(L ‐lactide) (PLLA) samples coated with poly(ethylene‐co‐vinyl alcohol) (EVOH) were made. Fibers were produced from these rodlike samples by using a melt electrospinning system equipped with a laser irradiating device, and the effects of EVOH content and the processing parameters of the melt electrospinning on fiber diameters were investigated. We also studied the fiber formation mechanism from the rods during the laser melt electrospinning process. The following conclusions were reached: (i) coating of EVOH on PLLA rods has a remarkable effect on decreasing fiber diameter from 3 μm to around 1 μm; (ii) increases in the electric field strength and temperature of spinning space decrease the average diameter of fibers produced from pure PLLA rods, and longer collector distance leads to lager PLLA fiber diameter; and (iii) the migration of PLLA component from the core to the surface of electrospun fibers takes place during the fiber formation process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Ethylene‐vinyl alcohol copolymer (EVOH)/exfoliated graphite (EFG) nanocomposite films were prepared by precoating EFG on the EVOH surface and conducting a successive melt‐extrusion process. Their physical properties were strongly dependent on the EFG content and the mixing method, which strongly affected the morphology and surface properties of the nanocomposite films. The hydrophobicity and water resistance property of EVOH increased by incorporating hydrophobic EFG and their effects were more pronounced in the precoating method, which is related to good dispersion of EFG in EVOH and an enhanced crystalline structure. The incorporation of EFG into EVOH by the precoating method more effectively diminished the dependence of the relative humidity on the oxygen transmission rate of pure EVOH and increased the oxygen barrier properties of EVOH at a high relative humidity. The incorporation of EFG into EVOH by the precoating method also induced relatively more enhanced thermal stability. These results suggest the feasibility of the application of moisture‐sensitive EVOH resin for food packaging films. POLYM. COMPOS., 37:1744–1753, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
A study of the thermal‐oxidative degradation of a high barrier ethylene–vinyl alcohol copolymer with 32 mol% of ethylene (EVOH) has been carried out by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier‐transform infrared spectroscopy (FTIR) under mild temperature conditions above melting. It was found that time exposures of up to 11 h at temperatures between 9 and 33 °C above the EVOH melting point resulted in polymer weight losses of up to 3.6% with colour formation. The weight loss was faster at short times and slowed down with increasing exposure time. DSC showed a small decrease in crystallinity and melting point, melting‐peak broadening and a slight increase in the glass transition temperature of the samples subjected to the more severe thermal‐oxidative treatment. The FTIR experiments showed transformation of the vinyl alcohol hydroxyl groups into carbonyl groups and creation of double bonds. Changes in degradation kinetics and perhaps in mechanisms are thought to occur with increasing exposure time. Moreover, FTIR measurements suggest that transformation of the hydroxyl groups leads to a weakening of the overall hydrogen bonding strength in the degraded samples, and therefore a reduction in intermolecular cohesion can be anticipated. © 2001 Society of Chemical Industry  相似文献   

9.
A series of new Polypropylene (PP)–clay blends, containing 5 wt % clay, were prepared by melt compounding with maleic anhydride grafted poly(ethylene‐co‐octene) (MAH‐g‐POE) as the compatibilizer by varying its content from 0 to 20 wt %. The effect of MAH‐g‐POE on the PP–clay miscibility was examined by X‐ray diffraction (XRD), scanning electronic microscope (SEM) observation, differential scanning calorimeter (DSC) analysis, dynamic mechanical thermal analysis (DMTA), and rheological testing in sequence. The results showed that the addition of MAH‐g‐POE could improve the dispersion of clay layers in PP matrix and promoted the interaction between PP molecules and clay layers. At 10 wt % MAH‐g‐POE, the PP–clay blend exhibited a highest value of Tc,onset and Tg as well as a biggest melt storage modulus (G′), indicating the greatest PP–clay interaction. On the other hand, improved toughness and stiffness coexisted in blends with 5–10 wt % loading of MAH‐g‐POE. In view of SEM and DMTA observations, MAH‐g‐POE was well miscible with the PP matrix, even with the concentration up to 20 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2558–2564, 2006  相似文献   

10.
Ethyl vinyl acetate (EVA) copolymers are recyclable plastics with exceptional biocompatibility, thus they are potent candidate materials for biomedical applications. In this study, improvement in the EVA biostability was aimed by the incorporation of hybrid nanofillers. EVA copolymer incorporating 3 wt % organically modified montmorillonite/bentonite (OMMT/Bent) hybrid nanofillers in different ratios (3:0, 2.75:0.25, 2.5:0.5, 2.25:0.75, 2:1 and 0:3 in wt %) were prepared by melt compounding process and then analyzed for their biostability upon in vitro physiological fluid exposure. Results indicated that the addition of OMMT2.75/Bent0.25 hybrid nanofillers can reduce the degradation of the EVA copolymer under physiological fluid environment through hydrophilic bentonite–vinyl acetate interactions. The obtained nanocomposite material achieved the best retention in tensile and thermal properties upon 4 weeks exposure in the in vitro physiological fluid. The findings indicate the potential of using the hybrid OMMT/Bent nanofillers for biostability enhancement of the EVA while reducing the nanocomposite production costs through the addition of cheaper natural bentonite as co‐nanofiller with the OMMT. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44640.  相似文献   

11.
In this study, starch‐based hybrid electrospun nanofiber meshes were fabricated by electrospinning. Spinning solutions were prepared by mixing starch and certain amounts of poly(ethylene‐alt‐maleic anhydride). Starch‐based nanofiber meshes became insoluble in water with thermal‐induced esterification of hydroxyl groups onto starch backbone. Morphologic and structure analysis of the electrospun nanofiber meshes were investigated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Thermal properties of nanofiber meshes were characterized by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal stability of nanofiber meshes were increased with formation of intermolecular bonds between starch and poly(ethylene‐alt‐maleic anhydride). POLYM. COMPOS. 34:1321–1324, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
The modification of viscose cellulosic fibers from eucalyptus wood was performed by alkali treatment to improve the surface properties of the fibers for subsequent incorporation as reinforcement into phenolic composites. The treatment was carried out at various NaOH concentrations (1–20 wt %) and soaking times (1 and 2 h). The structural transformations of the fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). Morphological observations of the fibers were performed using scanning electron microscopy (SEM), and wettability between the fibers and a resol‐type phenolic resin was studied by contact angle measurements. Thermogravimetric analysis (TGA) was used to determine the thermal properties. The treatment of cellulosic fibers with 5 wt % NaOH for 2 h was selected as optimum. According to the analyses, these conditions increase the amorphous regions of the fibers (FTIR), reduce the crystallinity (XRD), swell the microfibers and fibers (SEM), and improve the wettability and the thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2198–2204, 2013  相似文献   

13.
Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal, and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ductile behavior of the matrix by making the composites more brittle. At low fiber content, blends were more flexible, with higher tensile strength than at higher fiber levels. The temperature at the maximum degradation rate slightly shifted to lower values as fiber content increased. Comparing blends with and without fibers, there was no drastic change in melt temperature of the matrix with increase of fiber content, indicating that fibers did not lead to significant changes in crystalline structure. The micrographs of the tensile fractured specimens showed a large number of holes resulting from fiber pull‐out from the matrix, indicating poor adhesion between fiber and matrix. Although starch alone degraded readily, starch/EVOH/glycerol blends exhibited much slower degradation in compost. Composites produced 24.4–28.8% less CO2 compared with starch in a closed‐circuit respirometer. Addition of increasing amount of fiber in starch/EVOH/glycerol composite had no impact on its biodegradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Electrospinning technique was employed to prepare neat PVDF, nanoclay-PVDF and carbon nanotube (MWCNT)-PVDF nanocomposites, and nanoclay-carbon nanotube-PVDF hybrid nanocomposites. A mixture of dimethyl formamide/acetone (60/40) was used to fluidize the polymer and nanofillers. Electrospinning process was conducted under optimized conditions. Maximum modification was achieved at 0.15 wt% nanofiller. Rheological measurements on the prepared solutions revealed decreased material functions in the presence of nanoclay, whereas the rheological properties of MWCNT-PVDF solution did not show any significant reduction compared with those of neat PVDF solution. The behaviors of the hybrid nanocomposite solutions, though dependent on their composition and their material functions, increased with MWCNT concentration. These differences, together with variations in electrical properties of nanoclay and MWCNT, led to changes in morphology of the fiber during electrospinning process. Under electrospinning conditions designed for neat PVDF solution, mats with beads and with the highest fiber diameter were produced. Meanwhile, incorporation of both nanoclay and MWCNT into the solutions resulted in bead-free fibers with thinner diameter. Fourier transformed infrared spectrophotometry (FTIR) and X-ray diffractometry (XRD) were used to measure the β-phase crystalline content in electrospun mats. Complete agreement was found between the FTIR and XRD results. The lowest and highest β-phase contents were obtained for neat PVDF mat and hybrid nanocomposite mat containing 0.1 wt% clay, respectively. The mixing procedure of nanofillers and the PVDF solution was also found to be important. In case of hybrid nanocomposites, more β-crystals were formed when the nanoclay was first mixed in the absence of MWCNT.  相似文献   

15.
The focus of the current study is to investigate the influence of Co–Al layered double hydroxide (LDH) on the morphological, thermal, and mechanical features of poly(methyl methacrylate) (PMMA)‐based nanocomposites. Sodium dodecyl sulfate modified Co–Al LDH was synthesized by single step coagulation method. The PMMA nanocomposites containing different loadings of nanofiller (1–7 wt %) and polystyrene‐grafted maleic anhydride compatibilizer (5 wt %) were melt intercalated via twin screw extruder and later subjected to injection molding to prepare mechanical testing samples. The different properties of PMMA nanocomposites were studied by using XRD, TEM, FTIR, DSC, TGA, tensile, flexural, impact, and flammability analysis. The result of XRD analysis suggested the exfoliated morphology of the nanocomposite while the TEM demonstrated the intercalated structure at higher loading of LDH. The thermal characterization results revealed that thermal properties were improved by the addition of Co–Al LDH, whereas the flammability test exposed that dripping was minimum at 7 wt % loading. The mechanical properties exhibited that optimum results were obtained at 1 wt % loading of Co–Al LDH. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45774.  相似文献   

16.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

17.
Core‐shell nanofibers of poly (vinylidene fluoride)/polyaniline/multi‐walled carbon nanotubes (PVDF/PANi/MWCNTs) have been produced using the coaxial electrospinning technique. The nanofibers were semiconductive and had better piezoelectric properties than pure PVDF nanofibers. Piezoelectric PVDF nanofibers are capable of converting mechanical energy into electrical energy, which can be stored in charge storage devices. However, PVDF is not conductive and therefore, a conductive associate material is needed to transfer accumulated static charges into the capacitor. Fourier Transform Infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were carried out to study the crystalline β‐phase of PVDF. There was an increase in β‐phase in the electrospun PVDF nanofibers filled with MWCNTs as compared with compression molded samples of neat PVDF. Incorporation of PANi as an intrinsically conductive polymer (ICP) and MWCNTs as conductive nanofiller helps the movement of static charges. Core‐shell nanofibers had conductivities of about seven orders of magnitude higher than simple electrospun nanofibers. POLYM. COMPOS., 35:1198–1203, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
In this study, the possibility of using a biodegradable grade of thermoplastic poly(ethylene‐co‐vinyl alcohol) with high (71 mol %) vinyl alcohol (EVOH‐29), as a carrier to incorporate the renewable and biodegradable component amylopectin (AP) into poly(lactic acid) (PLA) through melt blending, was investigated. The effect of using a plasticizer/compatibilizer (glycerol) in the blend systems was also investigated. In a first step, the EVOH/AP blends were produced and thereafter, in a second step, these were mixed with PLA. In this first study, the blend morphology was investigated using optical microscopy, scanning electron microscopy and Raman imaging spectroscopy and the thermal properties were measured by differential scanning calorimetry. Despite the fact that EVOH and AP are both highly polar, their blends were immiscible. Still, the blends exhibited an excellent phase dispersion on a micron level, which was enhanced further by the addition of glycerol. A good phase dispersion was finally observed by incorporation of the latter blends in the PLA matrix, suggesting that the proposed blending route can be successfully applied for these systems. Finally, the Differential scanning calorimetry (DSC) data showed that the melting point of EVOH dropped in the EVOH/AP blends, but the properties of the PLA phase was still relatively unaffected as a result of blending with the above components. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
By in situ polycondensation, a intercalated poly(ethylene terephthalate)/organomontmorillonite nanocomposite was prepared after montmorillonite (MMT) had been treated with a water‐soluble polymer. This nanocomposite was produced to fibers through melt spinning. The resulting nanocomposite fibers were characterized by X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM). The interlayer distance of MMT dispersed in the nanocomposite fibers was further enlarged because of strong shear stress during processing of melt spinning. This was confirmed by XRD test and TEM images. DSC test results showed that incorporation of MMT accelerated the crystallization of poly(ethylene terephthalate) (PET), but the crystallinity of the drawn fibers just had a little increasing compared with that of neat PET drawn fibers. Also compared with pure PET drawn fibers, tensile strength at 5% elongation and thermal stability of the nanocomposite fibers were improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1443–1447, 2005  相似文献   

20.
Electrospun poly(vinyl alcohol) (PVA) fiber and its composites have been widely studied recently. However, most physical properties reported in literature are measured from a nanofiber web. In this study, for the first time, the mechanical properties of individual electrospun fiber, rather than fiber web, of cellulose nanowhisker-reinforced poly(vinyl alcohol) was studied using nanoindentation technique. The modulus is 2.1 GPa for a pure PVA electrospun fiber, and 7.6 GPa for 20.0 wt% cellulose nanowhisker-reinforced PVA electrospun fiber, respectively. The modulus of PVA/cellulose nanowhisker electrospun fibers increases linearly with increasing loading ratio of cellulose nanowhiskers up to 20.0 wt%. The experimental results were compared with that calculated using isotropic and longitudinal Halpin–Tsai models. The modules of the cellulose nanowhiskers are 60–80 % higher than the isotropic model predictions but lower than longitudinal model prediction, suggesting the nanowhiskers are partially aligned to the electrospun fiber direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号