首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以硼氢化物作为燃料电池的燃料因其高的理论电动势和比能量而引起研究者的广泛关注。理论上,BH-4的电氧化反应为八电子反应,但实际上由于所用阳极电催化剂的不同,BH-4电氧化释放出的电子数也不同。如何抑制BH-4在阳极的水解反应,促进其八电子氧化反应一直是直接硼氢化物燃料电池研究中的核心问题。综述了近几年来国内外在直接硼氢化物燃料电池阳极电催化剂方面所取得的研究进展,并对这一领域中需要深入研究的主要问题进行了论述。  相似文献   

2.
New solid polymer electrolyte composite membranes have been prepared using chitosan as matrices and incorporating potassium hydroxide as the functional ionic source. These membranes were featured as a three‐layer structure having a porous intermediate layer while the two crosslinked surface layers are dense. Results from impedance spectroscopy analysis showed that the conductivity of some hydrated composite membranes, after hydration for 1 h at room temperature, reached about 10−2 S cm−1. Several composite membranes were then tested in alkaline fuel cells, using hydrogen as fuel, air as oxidant and platinum as the electrode catalyst. A current density of 35 mA cm−2 has been achieved at 60 °C with a flow rate of hydrogen at 50 ml min−1 and air at 200 ml min−1. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
The electrochemical oxidation of BH4 in 2 M NaOH on Pt and Au (i.e. catalytic and non-catalytic electrodes, respectively, for BH4 hydrolysis accompanied by H2 evolution) has been studied by cyclic voltammetry, chrono-techniques (i.e., potentiometry, amperometry, coulometry) and electrochemical impedance spectroscopy. In the case of Pt the cyclic voltammetry behaviour of BH4 is influenced by both, the catalytic hydrolysis of BH4 yielding H2 (followed by electrooxidation of the latter at peak potentials between −0.7 and −0.9 V versus Ag/AgCl, KClstd) and direct oxidation of BH4 at more positive potentials, i.e., between −0.15 and −0.05 V. Thiourea (TU, 1.5×10−3 M) was an effective inhibitor of the catalytic hydrolysis associated with BH4 electrooxidation on Pt. Therefore, in the presence of TU, only the direct oxidation of BH4 has been detected, with peak potentials between −0.2 and 0 V. It is proposed that TU could improve the BH4 utilization efficiency and the coulombic efficiency of direct borohydride fuel cells using catalytic anodes. The electrooxidation of BH4 on Pt/TU is an overall four-electron process, instead of the maximum eight electrons reported for Au, and it is affected by adsorbed species such as BH4 (fractional surface coverage ∼0.3), TU and possibly reaction intermediates.  相似文献   

4.
Although fuel cells can be considered as a type of reactor, methods of kinetic analysis and reactor modeling from the viewpoint of chemical reaction engineering have not yet been established. The rate of an electrochemical reaction is a function of concentration, temperature, and interfacial potential difference (or electromotive force). This study examined the cathode reaction in a polymer electrolyte fuel cell, in which oxygen and protons react over platinum in the catalyst layer (CL). The effects of the oxygen partial pressure and the cathode electromotive force on the reaction rate were assessed. Resistance to proton transport increases the electromotive force and reducing the reaction rate. It was established that the effectiveness factor of the cathode CL is determined by competition between the reaction and mass transport of oxygen and protons. Two dimensionless moduli that govern the cathode behavior are proposed as a means of depicting the processes in the cell. © 2016 American Institute of Chemical Engineers AIChE J, 63: 249–256, 2017  相似文献   

5.
An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour   总被引:2,自引:0,他引:2  
A simple analytical expression to determine cell potential (E) against current density (i) behaviour in polymer electrolyte fuel cells (PEFCs) was derived. The equation describes experimental data over the whole range of current density taking into account possible mass transport limitations. The empirical equation was used to fit experimental data obtained in a 50 cm2 single cell in H2/air operation using electrodes with low Pt loading (0.1 mg cm-). A good agreement between theoretical and experimental data was found.  相似文献   

6.
It has been demonstrated recently that the power response of a polymer electrolyte fuel cell can be interpreted on the basis of a quadratic logistic differential equation. As this is a conceptual approach, the power response was obtained in this work from structural models in order to compare the results with the logistic equation. In this way it is possible to evaluate the contribution of the different effects that limit the response of the cell. It was found that the best comparison between the logistic equation and the structural model is obtained when the dependence of the membrane resistance with current density is considered.  相似文献   

7.
The use of titanium mesh-supported gold and silver anodes in direct borohydride fuel cells (DBFCs) is reported. The anodes were prepared by either thermal decomposition or electrochemical deposition and were characterised by scanning electron microscopy and X-ray diffraction analyses. The performance of the mesh electrodes was compared with that for carbon-supported electrodes. The mesh anodes gave current densities, for borohydride oxidation, up to 50% greater and cell power densities up to 20% greater than those obtained with carbon-supported anodes. The effects of catalyst loading and fuel cell operating conditions are also reported. Electrode stability was examined over a prolonged period.  相似文献   

8.
Heat-treated -oxo-iron(iii) tetramethoxy phenyl porphyrin (Fe-TMPP)2O and iron(iii) tetramethoxy phenyl porphyrin (FeTMPP-Cl) as well as iron(iii) octaethyl porphyrin (FeOEP-Cl) adsorbed on high-area carbons such as deashed and un-deashed RB carbon (Calgon) and Black Pearls-2000 (Cabot) have been found to exhibit stable and very high oxygen reduction rates. Experiments done over a period of 24h showed no performance degradation. Measured performances were very similar to supported platinum (E-Tek), when tested in 85% H3PO4-equilibrated Nafion 117 membrane at 125°C and hydrated-Nafion membrane at 60°C in a minifuel cell. The macrocycle cathodes are insensitive to the presence of methanol whereas the platinum cathodes are very sensitive and show degradation in the oxygen reduction performance.  相似文献   

9.
Quaternized poly(phthalazinone ether ketone)s (QPPEK)s were synthesized by the chloromethylation and quaternization of poly(phthalazinone ether ketone) (PPEK) with chloromethyl methyl ether in 98% concentrated sulfuric acid and following trimethylamine. The presence of ? CH2Cl groups in chloromethylated PPEK was confirmed by 1H‐NMR. An alkaline QPPEK membrane was prepared and its thermal and mechanical properties were tested. The alkaline QPPEK membrane had a methanol permeability 6.57 × 10?7 cm2/s and the highest anion conductivity 1.14 × 10?2 S/cm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Kangcheng Chen 《Polymer》2011,52(10):2255-2262
Sulfonated multiblock copolynaphthalimides (multiblock co-SPIs) were prepared by two-pot polymerization method from 1,4,5,8-naphthalenetetracarboxylic dianhydride, sulfonated diamine of 4,4′-bis(4-aminophenoxy)-3,3′-bis(4-sulfophenyl)biphenyl (BAPSPB) and nonsulfonated diamine of 4,4′-diaminophenyl hexafluoropropane. The multiblock co-SPI (BA1) with hydrophilic/hydrophobic block length of 20/10 and ion exchange capacity (IEC) of 1.67 meq g−1 exhibited larger water uptake, larger in-plane and through-plane proton conductivity (σ and σ⊥, respectively) than the random co-SPI with the similar IEC. The multiblock co-SPI (BA2) with the longer block length of 20/20 exhibited the large σ and σ⊥ comparable to those of BA1, in spite of the smaller IEC of 1.35 meq g−1. Both the multiblock and random co-SPIs showed the moderate anisotropic proton conductivity (σ/σ//≒ 0.70) as well as anisotropic membrane swelling with about three times larger through-plane swelling than in-plane swelling. The TEM observation revealed that BA2 had an isotropic and inhomogeneous morphology with indistinct microphase-separated structure, whereas the random co-SPIs had a homogeneous morphology. The behavior of BAPSPB-based multiblock co-SPI membranes were quite different from that of the multiblock co-SPIs based on 2,2′-bis(4-sulfophenoxy)benzidine, which was due to the presence of two flexible ether bonds in BAPSPB moiety of the main chain. Even under the low humidification of 27/27% RH at 90 °C and 0.2 MPa, BA2 exhibited the fairly high PEFC performance; namely, cell voltage of 0.67 V at load current density of 0.5 A cm−2 and maximum output of 0.51 W cm−2, which were much larger than those of BA1 and the random co-SPI (RA1) with IEC of 1.84 meq g−1, and have the high potential as PEM for PEFC applications.  相似文献   

11.
In small fuel cell applications, it is desirable to take care of the management of reactants, water and heat by passive means in order to minimize parasitic losses. A polymer electrolyte membrane fuel cell, in which air flow on the cathode was driven by free convection, was studied by experimental and modelling methods. The cathode side of the cell had straight vertical channels with their ends open to the ambient air. A two-dimensional, isothermal and steady state model was developed for the cathode side to identify the limiting processes of mass transport. The modelled domain consists of the cathode gas channel and the gas diffusion layer. Experimental data from current distribution measurements were used to provide boundary conditions for oxygen consumption and water production. The model results indicate that at the cell temperature of 40 °C the performance of the cell was limited by water removal. At the cell temperature of 60 °C, the current distribution was determined by the partial pressure of oxygen.  相似文献   

12.
本文介绍了直接聚合物电解质燃料电池的几种甲氧基燃料包括二甲醚、二甲氧基甲烷、三甲氧基甲烷和甲醇的电化学性能及在电池中反应副产物情况,对其应用前景作了初步估计。  相似文献   

13.
14.
硼氢化钠制氢技术在质子交换膜燃料电池中的研究进展   总被引:1,自引:0,他引:1  
王玉晓 《化工进展》2009,28(12):2122
硼氢化钠储氢量高达10.6%,安全、无爆炸危险,携带和运输方便;供氢系统设备简单,启动速度快,产氢速度可调,因此是一个非常良好的氢载体,是为质子交换膜燃料电池供氢的理想储氢介质。硼氢化钠供氢系统也已逐步应用于质子交换膜燃料电池电源中。介绍了这种制氢方式的几项关键技术:硼氢化钠水解制氢催化剂、硼氢化钠制氢反应器、氢气净化系统等在质子交换膜燃料电池中的研究进展,并指出了今后的研究发展方向。  相似文献   

15.
Xuhui Feng 《Electrochimica acta》2010,55(15):4579-4790
This paper conducts a one-dimensional theoretical study on the electrochemical phenomenon in the dual-layer cathode electrode of polymer electrolyte fuel cells (PEFCs) with varying sub-layer thicknesses, and further extends the analysis to a triple-layer configuration. We obtain the explicit solution for a general dual-layer configuration with different layer thicknesses. Distributions of the key quantities such as the local reaction current and electrolyte overpotential are exhibited at different ratios of the ionic conductivities, electrochemical kinetics, and layer thicknesses. Based on the dual-layer approach, we further derive the explicit solutions for a triple-layer electrode. Sub-layer performances are plotted and compared. The results indicate that the layer adjacent to the electrolyte membrane may contribute a major part of the electrode faradic current production. The theoretical analysis presented in this paper can be applied to assist electrode development through complicated multi-layer configuration for cost-effective high performance electrodes.  相似文献   

16.
Data on the performance of a direct borohydride fuel cell (DBFC) equipped with an anion exchange membrane, a Pt–Ru/C anode and a Pt/C cathode are reported. The effect of oxidant (air or oxygen), borohydride and electrolyte concentrations, temperature and anode solution flow rate is described. The DBFC gives power densities of 200 and 145 mW cm−2 using ambient oxygen and air cathodes respectively at medium temperatures (60 °C). The performance of the DBFC is very good at low temperatures (ca. 30 °C) using modest catalyst loadings of 1 mg cm−2 for anode and cathode. Preliminary data indicate that the cell will be stable over significant operating times.  相似文献   

17.
凝胶聚合物电解质的电化学性能   总被引:5,自引:0,他引:5       下载免费PDF全文
张森  史鹏飞 《化工学报》2005,56(2):329-332
用化学交联法制备了凝胶聚合物电解质.聚烯烃多孔膜支撑的凝胶聚合物电解质具有优良的电化学性能, 室温电导率为1.01×10-3S•cm-1,锂离子迁移数为0.41,在Al电极上的氧化起始电位达到4.2 V以上.采用聚烯烃多孔膜支撑的凝胶聚合物电解质制备了聚合物锂离子电池,并研究了工艺条件对聚合物锂离子电池电化学性能的影响.研究的工艺条件包括:单体添加量和电极组合方式.优化后的聚合物锂离子电池具有良好的电化学性能,1 C放电容量为0.2 C放电容量的93.2%,经100次1 C循环后的剩余容量仍在80%以上.  相似文献   

18.
Carbon black (CB) and polyvinylidene fluoride (PVDF) composites were obtained and subsequently characterized, both microstructurally (DSC and DMA) and electrically. In addition, the electrochemical performance of these materials was tested in the form of bipolar plates, expressly manufactured for this purpose and incorporated in a conventional fuel cell. The results obtained allow for the conclusion that CB incorporation into PVDF yields polymer composite materials with electrical conductivity of about 2.4 S/cm, which may be thermically processed and given any convenient shape with the means conventionally applied in the field of polymer technologies. It was found that CB concentration slightly affects the microstructural parameters of the composites (melting temperature, glass‐transition temperature, Avrami kinetic parameters, etc.). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2817–2822, 2002; DOI 10.1002/app.10257  相似文献   

19.
Performance of a direct methanol fuel cell   总被引:12,自引:0,他引:12  
The performance of a direct methanol fuel cell based on a Nafion® solid polymer electrolyte membrane (SPE) is reported. The fuel cell utilizes a vaporized aqueous methanol fuel at a porous Pt–Ru–carbon catalyst anode. The effect of oxygen pressure, methanol/water vapour temperature and methanol concentration on the cell voltage and power output is described. A problem with the operation of the fuel cell with Nafion® proton conducting membranes is that of methanol crossover from the anode to the cathode through the polymer membrane. This causes a mixed potential at the cathode, can result in cathode flooding and represents a loss in fuel efficiency. To evaluate cell performance mathematical models are developed to predict the cell voltage, current density response of the fuel cell.  相似文献   

20.
Direct ethanol fuel cells (DEFCs) offer a high degree of design flexibility, ranging from a single cell to a massive multi-cell that can be used in various applications, including portable devices, transportation, and stationary applications. Unfortunately, the most significant barrier to the commercialization of DEFCs is getting low-cost and ethanol permeability, high conductivity performance, and extended durability of polymer electrolyte membranes, as key components that highly influence the overall performance. In this paper, the recent progress in developing the polymer electrolyte membrane for the application of DEFCs has been comprehensively reviewed. Focusing on an updated modification of polymeric materials in the last 5 years, including Nafion-based membrane, polyvinyl alcohol-based membrane, polybenzimidazoles-based membrane, chitosan-based membrane, and sodium alginate-based membrane, as well as factors and challenges that affected the performance of polymer electrolyte membranes have been discussed, including the main characterization, catalyst selection, cell design, and work in membrane and cell performance of DEFCs. All discussion addresses the strategy to improve the performance of polymer electrolyte membranes in DEFCs in order to penetrate the commercialization stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号