首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate scope of the flavoprotein alditol oxidase (AldO) from Streptomyces coelicolor A3(2), recombinantly produced in Escherichia coli, was explored. While it has been established that AldO efficiently oxidizes alditols to D ‐aldoses, this study revealed that the enzyme is also active with a broad range of aliphatic and aromatic alcohols. Alcohols containing hydroxy groups at the C‐1 and C‐2 positions like 1,2,4‐butanetriol (Km=170 mM, kcat=4.4 s−1), 1,2‐pentanediol (Km=52 mM, kcat=0.85 s−1) and 1,2‐hexanediol (Km=97 mM, kcat=2.0 s−1) were readily accepted by AldO. Furthermore, the enzyme was highly enantioselective for the oxidation of 1,2‐diols [e.g., for 1‐phenyl‐1,2‐ethanediol the (R)‐enantiomer was preferred with an E‐value of 74]. For several diols the oxidation products were determined by GC‐MS and NMR. Interestingly, for all tested 1,2‐diols the products were found to be the α‐hydroxy acids instead of the expected α‐hydroxy aldehydes. Incubation of (R)‐1‐phenyl‐1,2‐ethanediol with 18O‐labelled water (H218O) revealed that a second enzymatic oxidation step occurs via the hydrate product intermediate. The relaxed substrate specificity, excellent enantioselectivity, and independence of coenzymes make AldO an attractive enzyme for the preparation of optically pure 1,2‐diols and α‐hydroxy acids.  相似文献   

2.
Previous studies showed that verruculogen is the end product of a biosynthetic gene cluster for fumitremorgin‐type alkaloids in Aspergillus fumigatus and Neosartorya fischeri. In this study, we isolated fumitremorgin A from N. fischeri. This led to the identification of the responsible gene, ftmPT3, for O‐prenylation of an aliphatic hydroxy group in verruculogen. This gene was found at a different location in the genome of N. fischeri than the identified cluster. The coding sequence of ftmPT3 was amplified by fusion PCR and overexpressed in Escherichia coli. The enzyme product of the soluble His8‐FtmPT3 with verruculogen and dimethylallyl diphosphate (DMAPP) was identified unequivocally as fumitremorgin A by NMR and MS analyses. KM values of FtmPT3 were determined for verruculogen and DMAPP at 5.7 and 61.5 μM , respectively. Average turnover number (kcat) was calculated from kinetic parameters of verruculogen and DMAPP to be 0.069 s?1. FtmPT3 also accepted biosynthetic precursors of fumitremorgin A, for example, fumitremorgin B and 12,13‐dihydroxyfumitremorgin C, as substrates and catalyses their prenylation.  相似文献   

3.
Proteases have niche applications in diagnostic kits that use cell lysis and thereby require high resistance towards chaotropic salts and detergents, such as guanidinium chloride (GdmCl) and sodium dodecylsulfate (SDS). Subtilisin E, a well‐studied serine protease, was selected to be re‐engineered by directed evolution into a “chaophilic” protease that would be resistance to GdmCl and SDS, for application in diagnostic kits. In three iterative rounds of directed evolution, variant SeSaM1–5 (S62I/A153V/G166S/I205V) was generated, with improved activity (330 %) and increased half life in 1 M GdmCl (<2 min to 4.7 h) or in 0.5 % SDS (<2 min to 2.7 h). Saturation mutagenesis at each site in the wild‐type subtilisin E revealed that positions 62 and 166 were mainly responsible for increased activity and stability. A double mutant, M2 (S62I/G166M), generated by combination of the best single mutations showed significantly improved kinetic constants; in 2 M GdmCl the Km value decreased (29‐fold) from 7.31 to 0.25 mM , and the kcat values increased (fourfold) from 15 to 61 s?1. The catalytic efficiency, kcat/Km, improved dramatically (GdmCl: 247 mM ?1 s?1 (118‐fold); SDS, 179 mM ?1 s?1 (13‐fold)). In addition, the SeSaM1–5 variant showed higher stability in 2.0 % SDS when compared to the wild‐type (t1/2 54.8 min (>27‐fold)). Finally, molecular dynamics simulations of the wild‐type subtilisin E showed that Gdm+ ions could directly interact with active site residues, thereby probably limiting access of the substrate to the catalytic centre.  相似文献   

4.
Natural and synthetic unsaturated glucuronides were tested as substrates for Clostridium perfringens unsaturated glucuronyl hydrolase to probe its mechanism and to guide inhibitor design. Of the natural substrates, a chondroitin disaccharide substrate with sulfation of the primary alcohol on carbon 6 of its N‐acetylgalactosamine moiety was found to have the highest turnover number of any substrate reported for an unsaturated glucuronyl hydrolase, with kcat=112 s?1. Synthetic aryl glycoside substrates with electron‐withdrawing aglycone substituents were cleaved more slowly than those with electron‐donating substituents. Similarly, an unsaturated glucuronyl fluoride was found to be a particularly poor substrate, with kcat/Km=44 nM ?1 s?1—a very unusual result for a glycoside‐cleaving enzyme. These results are consistent with a transition state with positive charge at carbon 5 and the endocyclic oxygen, as anticipated in the hydration mechanism proposed. However, several analogues designed to take advantage of strong enzyme binding to such a transition state showed little to no inhibition. This result suggests that further work is required to understand the true nature of the transition state stabilised by this enzyme.  相似文献   

5.
Isoprenoids form the largest family of compounds found in nature. Isoprenoids are often attached to other moieties such as aromatic compounds, indoles/tryptophan, and flavonoids. These reactions are catalyzed by three phylogenetically distinct prenyltransferases: soluble aromatic prenyltransferases identified mainly in actinobacteria, soluble indole prenyltransferases mostly in fungi, and membrane‐bound prenyltransferases in various organisms. Fusicoccin A (FC A) is a diterpene glycoside produced by the plant‐pathogenic fungus Phomopsis amygdali and has a unique O‐prenylated glucose moiety. In this study, we identified for the first time, from a genome database of P. amygdali, a gene (papt) encoding a prenyltransferase that reversibly transfers dimethylallyl diphosphate (DMAPP) to the 6′‐hydroxy group of the glucose moiety of FC A to yield an O‐prenylated sugar. An in vitro assay with a recombinant enzyme was also developed. Detailed analyses with recombinant PAPT showed that the enzyme is likely to be a monomer and requires no divalent cations. The optimum pH and temperature were 8.0 and 50 °C, respectively. Km values were calculated as 0.49±0.037 μM for FC P (a plausible intermediate of FC A biosynthesis) and 8.3±0.63 μM for DMAPP, with a kcat of 55.3±3.3×10?3 s. The enzyme did not act on representative substrates of the above‐mentioned three types of prenyltransferase, but showed a weak transfer activity of geranyl diphosphate to FC P.  相似文献   

6.
Arginine deiminase (ADI, EC 3.5.3.6) is a potential antitumor drug for the treatment of arginine‐auxotrophic tumors such as hepatocellular carcinomas (HCCs) and melanomas, and studies on human lymphatic leukemia cell lines have confirmed that ADI has antiangiogenic activity. Recent studies showed that a combination of taxane and ADI‐PEG20, which induces caspase‐independent apoptosis, is more effective than taxane monotherapy for prostate cancer. The main limitation of ADI from Pseudomonas plecoglossicida (PpADI) and of many other ADI enzymes lies in their pH‐dependent activity profile. PpADI has a pH optimum at 6.5 and a pH shift from 6.5 to 7.5 results in an ~80 % activity drop (the pH of human plasma is 7.35 to 7.45). In 2010, we reported a proof of concept for ADI engineering by directed evolution that resulted in variant M2 (K5T/D44E/H404R). M2 has a pH optimum of pH 7.0, a fourfold higher kcat value than the wild‐type PpADI (pH 7.4, 0.5 M phosphate buffer), and an increased Km value for substrate arginine. In our latest work, variants M5 (K5T/D38H/D44E/A128T/H404R) and M6 (K5T/D38H/D44E/A128T/E296K/H404R) were generated by directed evolution by employing PBS buffer (pH 7.4), which mimics physiological conditions. The S0.5 value of parent M3 (K5T/D44E/A128T/H404R) decreased from 2.01 to 1.48 mM (M5) and 0.81 mM (M6). The S0.5 value of M6 (0.81 mM ) is lower than that of wild‐type PpADI (1.30 mM ); the kcat values improved from 0.18 s?1 (wild‐type PpADI) to 17.56 s?1 (M5, 97.6‐fold) and 11.64 s?1 (M6, 64.7‐fold).  相似文献   

7.
Alkaline esterase (carboxylic‐ester hydrolases; EC 3.1.1.1) extracted from germinated soybean seeds (Glycine max) was purified approximately 3.6 times by chromatography in a DEAE‐cellulose anion exchange column and filtration in Sephadex G100 gel. The molecular mass of the enzyme was estimated at 45 kDa by gel electrophoresis (SDS‐PAGE). The purified enzyme showed a specific activity of 5.6 U mg?1 using p‐nitrophenyl butyrate as substrate. The esterase showed optimal activity at 47 °C in moderately alkaline pH, low stability in temperatures higher than 50 °C, and high stability at pH values between 6 and 9.5. The Ca2+ and Co2+ ions proved to have a positive effect on enzyme activity; however, Hg2+ completely inhibited esterase activity. Using p‐nitrophenyl butyrate as substrate, the enzyme showed a Km of 0.39 mM, Vmax of 31.5 mM mg?1 min?1 and kcat 7.60 × 106 s?1. Regarding substrate affinity, the enzyme showed greater activity for substrates containing short‐chain fatty acids, especially p‐nitrophenyl acetate. Such characteristics give the enzyme great potential for application in the production of low molecular weight esters, in the food industry, and in chemical products. This enzyme is another new member of the family of lipases and esterases from vegetable seeds with high activity and stability in alkaline pH.  相似文献   

8.
A gene from the marine bacterium Stenotrophomonas maltophilia encodes a 38.6 kDa FAD‐containing flavoprotein (Uniprot B2FLR2) named S. maltophilia flavin‐containing monooxygenase (SMFMO), which catalyses the oxidation of thioethers and also the regioselective Baeyer–Villiger oxidation of the model substrate bicyclo[3.2.0]hept‐2‐en‐6‐one. The enzyme was unusual in its ability to employ either NADH or NADPH as nicotinamide cofactor. The KM and kcat values for NADH were 23.7±9.1 μM and 0.029 s?1 and 27.3±5.3 μM and 0.022 s?1 for NADPH. However, kcat/KM value for the ketone substrate in the presence of 100 μM cofactor was 17 times greater for NADH than for NADPH. SMFMO catalysed the quantitative conversion of 5 mM ketone in the presence of substoichiometric concentrations of NADH with the formate dehydrogenase cofactor recycling system, to give the 2‐oxa and 3‐oxa lactone products of Baeyer–Villiger reaction in a ratio of 5:1, albeit with poor enantioselectivity. The conversion with NADPH was 15 %. SMFMO also catalysed the NADH‐dependent transformation of prochiral aromatic thioethers, giving in the best case, 80 % ee for the transformation of p‐chlorophenyl methyl sulfide to its R enantiomer. The structure of SMFMO reveals that the relaxation in cofactor specificity appears to be accomplished by the substitution of an arginine residue, responsible for recognition of the 2′‐phosphate on the NADPH ribose in related NADPH‐dependent FMOs, with a glutamine residue in SMFMO. SMFMO is thus representative of a separate class of single‐component, flavoprotein monooxygenases that catalyse NADH‐dependent oxidations from which possible sequences and strategies for developing NADH‐dependent biocatalysts for asymmetric oxygenation reactions might be identified.  相似文献   

9.
We introduce a new class of substrates (compounds I – III ) for leukocyte esterase (LE) that react with LE yielding anodic current in direct proportion to LE activity. The kinetic constants Km and kcat for the enzymatic reactions were determined by amperometry at a glassy carbon electrode. The binding affinity of I – III for LE was two orders of magnitude better than that of existing optical LE substrates. The specificity constant kcat/Km was equal to 2.7, 3.8, and 5.8×105 m ?1 s?1 for compounds containing the pyridine ( I ), methoxypyridine ( II ), and (methoxycarbonyl)pyridine ( III ), respectively, thus showing an increase in catalytic efficiency in this order. Compound III had the lowest octanol/water partition coefficient (log p=0.33) along with the highest topological surface area (tPSA=222 Å2) and the best aqueous solubility (4.0 mg mL?1). The average enzymatic activity of LE released from a single leukocyte was equal to 4.5 nU when measured with compound III .  相似文献   

10.
Two putative prenyltransferase genes, SAML0654 and Strvi8510, were identified in Streptomyces ambofaciens and Streptomyces violaceusniger, respectively. Their deduced products share 63 % sequence identity. Biochemical investigations with recombinant proteins demonstrated that L ‐tryptophan and derivatives, including D ‐tryptophan, 4‐, 5‐, 6‐ and 7‐methyl‐dl ‐tryptophan, were well accepted by both enzymes in the presence of DMAPP. Structural elucidation of the isolated products revealed regiospecific prenylation at C‐6 of the indole ring and proved unequivocally the identification of two very similar 6‐dimethylallyltryptophan synthases (6‐DMATS). Detailed biochemical investigations with SAML0654 proved L ‐tryptophan to be the best substrate (Km 18 μm, turnover 0.3 s?1). Incubation with different prenyl donors showed that they also accepted GPP and catalyzed the same specific prenylation. Utilizing GPP as a prenyl donor has not been reported for tryptophan prenyltransferases previously. Both enzymes also catalyzed prenylation of some hydroxynaphthalenes; this has not previously been described for bacterial indole prenyltransferases. Interestingly, SAML0654 transferred prenyl moieties onto the unsubstituted ring of hydroxynaphthalenes.  相似文献   

11.
δ‐Cadinene synthase is a sesquiterpene cyclase that utilises the universal achiral precursor farnesyl diphosphate (FDP) to generate predominantly the bicyclic sesquiterpene δ‐cadinene and about 2 % germacradien‐4‐ol, which is also generated from FDP by the cyclase germacradien‐4‐ol synthase. Herein, the mechanism by which sesquiterpene synthases discriminate between deprotonation and reaction with a nucleophilic water molecule was investigated by site‐directed mutagenesis of δ‐cadinene synthase. If W279 in δ‐cadinene synthase was replaced with various smaller amino acids, the ratio of alcohol versus hydrocarbon product was directly proportional to the van der Waals volume of the amino acid side chain. DCS‐W279A is a catalytically highly efficient germacradien‐4‐ol synthase (kcat/KM=1.4×10?3 μm s?1) that produces predominantly germacradien‐4‐ol in addition to 11 % δ‐cadinene. Water capture is not achieved through strategic positioning of a water molecule in the active site, but through a coordinated series of loop movements that allow bulk water access to the final carbocation in the active site prior to product release.  相似文献   

12.
Specific inhibition of the copper‐containing peptidylglycine α‐hydroxylating monooxygenase (PHM), which catalyzes the post‐translational modification of peptides involved in carcinogenesis and tumor progression, constitutes a new approach for combating cancer. We carried out a structure–activity study of new compounds derived from a well‐known PHM substrate analogue, the olefinic compound 4‐phenyl‐3‐butenoic acid (PBA). We designed, synthesized, and tested various PBA derivatives both in vitro and in silico. We show that it is possible to increase PBA affinity for PHM by appropriate functionalization of its aromatic nucleus. Compound 2 d , for example, bears a meta‐benzyloxy substituent, and exhibits better inhibition features (Ki=3.9 μM , kinact/Ki=427 M ?1 s?1) than the parent PBA (Ki=19 μM , kinact/Ki=82 M ?1 s?1). Docking calculations also suggest two different binding modes for PBA derivatives; these results will aid in the development of further PHM inhibitors with improved features.  相似文献   

13.
The Rv3377c gene from the Mycobacterium tuberculosis H37 genome is specifically limited to those Mycobacterium species that cause tuberculosis. We have demonstrated that the gene product of Rv3377c is a diterpene cyclase that catalyzes the formation of tuberculosinol from geranylgeranyl diphosphate (GGPP). However, the characteristics of this enzyme had not previously been studied in detail with homogeneously purified enzyme. The purified enzyme catalyzed the synthesis of tuberculosinyl diphosphate from GGPP, but it did not bring about the synthesis of tuberculosinol. Optimal conditions for the highest activity were found to be as follows: pH 7.5, 30 °C, MgII (0.1 mM ), and Triton X‐100 (0.1 %). Under these conditions, the kinetic values of KM and kcat were determined to be 11.7±1.9 μM for GGPP and 12.7±0.7 min?1, respectively, whereas the specific activity was 186 nmol min?1 mg?1. The enzyme activity was inhibited at substrate concentrations higher than 50 μM . The catalytic activity was strongly inhibited by 15‐aza‐dihydrogeranylgeraniol and 5‐isopropyl‐N,N,N,2‐tetramethyl‐4‐(piperidine‐1‐carbonyloxy)benzenaminium chloride (Amo‐1618). The DXDTT293–297 motif, corresponding to the DXDDTA motif conserved among terpene cyclases, was mutated in order to investigate its function. The middle D295 was found to be the most crucial entity for the catalysis. D293 and two threonine residues function synergistically to enhance the acidity of D295, possibly through hydrogen‐bonding networks. The Rv3377c enzyme could also react with (14R/S)‐14,15‐oxidoGGPP to generate 3α‐ and 3β‐hydroxytuberculosinyl diphosphate. Conformational analyses were carried out with deuterium‐labeled GGPP and oxidoGGPP. We found that GGPP and (14R)‐oxidoGGPP adopted a chair/chair conformation, but (14S)‐oxidoGGPP adopted a boat/chair conformation. Interestingly, the conformations of oxidoGGPP for the A‐ring formation are the opposite of those of oxidosqualene when it is used as a substrate by squalene cyclases for the biosynthesis of hopene and tetrahymanol. (3R)‐Oxidosqualene is folded in a boat conformation, whereas (3S)‐2,3‐oxidosqualene folds into a chair conformation, for the formation of the A‐rings of the hopene and tetrahymanol skeletons, respectively.  相似文献   

14.
Enzyme efficiency results from the cooperation of functional groups in the catalytic site. In order to mimic a natural enzyme, a definite 3D scaffold must be carefully designed so that the functional groups can work cooperatively. During the HIV‐1 fusion process, the gp41 N‐ and C‐terminal heptad repeat regions form a coiled‐coil six‐helical bundle (6HB) that brings the viral and target cell membranes into close proximity for fusion. We used 6HB as the molecular model for a novel scaffold for the design of an artificial enzyme, in which the modified C34 and N36 peptides formed a unique 6HB structure through specific molecular recognition, and the position and orientation of the side‐chain groups on this scaffold were predictable. The histidine modified 6HB C34H13/20/N36H15/22 showed enzyme‐like hydrolytic activity towards p‐nitrophenyl acetate (PNPA; kcat/KM=3.66 M ?1 s?1) through the cooperation of several inter‐ or intrahelical imidazole groups. Since the catalytic activity of 6HB depends on the C‐ and N‐peptide assembly, either HIV fusion inhibitors that can compete with the formation of catalytic 6HB or denaturants that can destroy the ordered structure were able to modulate its activity. Further engineering of the solvent‐exposing face with Glu?‐Lys+ salt bridges enhanced the helicity and the stability of 6HB. As a result, the population and stability of cooperative catalytic units increased. In addition, the Glu?‐Lys+‐stabilized 6HB SC35H13/20/N36H15/22 had increased catalytic efficiency (kcat/KM=6.30 M ?1 s?1). A unique 6HB system was specifically assembled and provided a scaffold sufficiently stable to mimic the function of enzymes or other biomolecules.  相似文献   

15.
The S‐selective hydroxynitrile lyase from Baliospermum montanum (BmHNL) has broad substrate specificity toward aromatic substrates as well as high temperature stability, although with low enantioselectivity and specific activity. To expand the industrial application of this enzyme, we improved its enantioselectivity and specific activity toward (S)‐mandelonitrile by mutagenesis. The specific activity of the BmHNL H103C/N156G mutant for (S)‐mandelonitrile production was raised to 154 U mg?1 (WT BmHNL: 52 U mg?1). The enantiomeric excess was increased to 93 % (WT BmHNL: 55 %). The kinetic analysis revealed Km for (R)‐mandelonitrile and kcat for (S)‐mandelonitrile increased by the mutation at Asn156, thus contributing to the increase in enantiomeric excess. This is the first report on an improvement in catalytic efficiency and enantiomeric excess of BmHNL for (S)‐mandelonitrile synthesis by random and site‐directed mutagenesis.  相似文献   

16.
The reductive amination of ketones to produce chiral amines is an important transformation in the production of pharmaceutical intermediates. Therefore, industrially applicable enzymatic methods that enable the selective synthesis of chiral amines could be very useful. Using a phenylalanine dehydrogenase scaffold devoid of amine dehydrogenase activity, a robust amine dehydrogenase has been evolved with a single two‐site library allowing for the direct production of (R)‐1‐(4‐fluorophenyl)‐propyl‐2‐amine from para‐fluorophenylacetone with a kcat value of 6.85 s−1 and a KM value of 7.75 mM for the ketone substrate. This is the first example of a highly active amine dehydrogenase capable of accepting aliphatic and benzylic ketone substrates. The stereoselectivity of the evolved amine dehydrogenase was very high (>99.8% ee) showing that high selectivity of the wild‐type phenylalanine dehydrogenase was conserved in the evolution process. When paired with glucose/glucose dehydrogenase, NADH cofactor can be effficiently regenerated and the reaction driven to over 93% conversion. The broad specificity, high selectivity, and near complete conversion render this amine dehydrogenase an attractive target for further evolution toward pharmaceutical compounds and subsequent application.  相似文献   

17.
Mannopeptimycin, a potent drug lead, has superior activity against difficult‐to‐treat multidrug‐resistant Gram‐positive pathogens such as methicillin‐resistant Staphylococcus aureus (MRSA). (2S,3S)‐β‐Methylphenylalanine is a residue in the cyclic hexapeptide core of mannopeptimycin, but the synthesis of this residue is far from clear. We report here on the reaction order and the stereochemical course of reaction in the formation of (2S,3S)‐β‐methylphenylalanine. The reaction is executed by the enzymes MppJ and TyrB, an S‐adenosyl methionine (SAM)‐dependent methyltransferase and an (S)‐aromatic‐amino‐acid aminotransferase, respectively. Phenylpyruvic acid is methylated by MppJ at its benzylic position at the expense of one equivalent of SAM. The resulting β‐methyl phenylpyruvic acid is then converted to (2S,3S)‐β‐methylphenylalanine by TyrB. MppJ was further determined to be regioselective and stereoselective in its catalysis of the formation of (3S)‐β‐methylphenylpyruvic acid. The binding constant (KD) of MppJ versus SAM is 26 μM . The kinetic constants with respect to kcat Ppy and KM Ppy, and kcat SAM and KM SAM are 0.8 s?1 and 2.5 mM , and 8.15 s?1 and 0.014 mM , respectively. These results suggest SAM has higher binding affinity for MppJ than Ppy, and the C? C bond formation in βmPpy might be the rate‐limiting step, as opposed to the C? S bond breakage in SAM.  相似文献   

18.
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0–8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s−1, and kcat/KM 3088.46 mM−1·s−1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s−1, and kcat/KM 226.87 mM−1·s−1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.  相似文献   

19.
BACKGROUND: The effect of acrylic acid neutralization on the degradation of alkoxyamine initiators for nitroxide‐mediated polymerization (NMP) was studied using styrene/acrylic acid and styrene/sodium acrylate random copolymers (20 mol% initial acrylate feed concentration) as macro‐initiators. The random copolymers were re‐initiated with fresh styrene in 1,4‐dioxane at 110 °C at SG1 mediator/BlocBuilder® unimolecular initiator ratios of 5 and 10 mol%. RESULTS: The value of kpK (kp = propagation rate constant, K = equilibrium constant) was not significantly different for styrene/acrylic acid and styrene/sodium acrylate compositions at 110 °C (kpK = 2.4 × 10?6–4.6 × 10?6 s?1) and agreed closely with that for styrene homopolymerization at the same conditions (kpK = 2.7 × 10?6–3.0 × 10?6 s?1). All random copolymers had monomodal, narrow molecular weight distributions (polydispersity index M?w/M?n = 1.10–1.22) with similar number‐average molecular weights M?n = 19.3–22.1 kg mol?1. Re‐initiation of styrene/acrylic acid random copolymers with styrene resulted in block copolymers with broader molecular weight distributions (M?w/M?n = 1.37–2.04) compared to chains re‐initiated by styrene/sodium acrylate random copolymers (M?w/M?n = 1.33). CONCLUSIONS: Acrylic acid degradation of the alkoxyamines was prevented by neutralization of acrylic acid and allowed more SG1‐terminated chains to re‐initiate the polymerization of a second styrenic block by NMP. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
The third‐generation peptide‐dendrimer B1 (AcES)8(BEA)4(K‐Amb‐Y)2BCD‐NH2 (B=branching (S)‐2,3‐diaminopropanoic acid, K=branching lysine, Amb=4‐aminomethyl‐benzoic acid) is the first synthetic model for cobalamin‐binding proteins and binds cobalamin strongly (Ka=5.0×106 M ?1) and rapidly (k2=346 M ?1 s?1) by coordination of cobalt to the cysteine residue at the dendrimer core. A structure–activity relationship study is reported concerning the role of negative charges in binding. Substituting glutamates (E) for glutamines (Q) in the outer branches of B1 to form N3 (AcQS)8(BQA)4(B‐Amb‐Y)2BCD‐NH2 leads to stronger (Ka=12.0×106 M ?1) but slower (k2=67 M ?1 s?1) cobalamin binding. CD and FTIR spectra show that the dendrimers and their cobalamin complexes exist as random‐coil structures without aggregation in solution. The hydrodynamic radii of the dendrimers determined by diffusion NMR either remains constant or slightly decreases upon binding to cobalamin; this indicates the formation of compact, presumably hydrophobically collapsed complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号