首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of five different types of fillers on the thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers were explored to develop a filled polyurethane elastomeric liner for rocket motors with hydroxyl-terminated polybutadiene-based composite propellants. Two type of carbon black, silica, aluminum oxide, and zirconium(III) oxide were used as filler. Based on the improvement in the tensile properties and the erosion resistance achieved in the first part of the study, an ISAF-type carbon black was selected to be used as the main filler in combination with an additional filler. The second part involves the investigation of polyurethane elastomers containing a second filler in various amounts in addition to the ISAF-type carbon black used as the main filler. In addition to the thermal and mechanical properties, the processability of the uncured polyurethane mixtures were also explored by measuring the viscosity in this second part of the study. The studied fillers do not considerbly change the thermal degradation temperatures and the thermal conductivity of the polyurethane elastomers with a filler content up to 16 wt %. The best improvement in the erosion resistance and tensile strength of the polyurethane elastomers with additional fillers is also achieved when filled with the ISAF-type carbon black, whereas the use of zirconium(III) oxide as additional filler provides almost no improvement in these properties. Viscosity of the uncured polyurethane mixtures increases with the increasing filler content and with the decreasing particle size of the filler. Aluminum oxide-filled elastomers seem to be the most suitable compositions having sufficiently high thermal and mechanical properties, together with the processability of uncured mixtures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1057–1065, 1998  相似文献   

2.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

3.
Synthetic α‐Al2O3 platelets, also referred to as corundum and white sapphire, represent attractive fillers improving the mechanical properties of vinylester‐based chemical anchoring systems. Even in the absence of coupling agents, as verified by scanning electron microscopic (SEM) analyses of fracture surfaces, α‐Al2O3 platelets of 200 nm thickness and 5–10 µm size are uniformly dispersed in vinylester resins which are cured by free radical polymerization at room temperature. With increasing content of ultrahard α‐Al2O3 platelets (0–40 wt%) the Young's modulus of α‐Al2O3 platelet/vinylester composites increases from 3200 to 9000 MPa. However, 1–5 wt% 3‐methacryloyloxypropyl‐trimethoxysilane (MPS) as coupling agent, added to the vinylester resin or preferably used to functionalize α‐Al2O3 surfaces in a filler pretreatment step, improves elongation at break (+50%) without sacrificing high stiffness and strength. The X‐ray photoelectron spectroscopy (XPS) analysis confirms the successful surface‐functionalization of α‐Al2O3 platelets by using pretreatments with MPS in toluene, acidified ethanol/water or tetrahydrofuran, respectively. The MPS filler pretreatment simultaneously enhances tensile strength (+22%), elongation at break (+50%), and Young's modulus (+12%) as compared to composites containing unmodified filler. According to SEM analyses of composite fracture surfaces, MPS‐mediated functionalization affords significantly improved interfacial adhesion between α‐Al2O3 platelets and the polymer matrix.

  相似文献   


4.
A new modified carbon black (GCB) was prepared by adding special RFL latex into N220. Dynamic properties were obtained over a wide range of temperatures and strains on vulcanizates filled with GCB and unmodified carbon black, respectively. The results show that the GCB can effectively decrease the tan δ value at 60 and 90°C of SBR vulcanizates compared with that of the common unmodified carbon blacks, which responds to the fact that GCB is beneficial to lower rolling resistance and heat generation of the vulcanizates in comparison to that of the unmodified carbon black. Among the factors responsible for this, filler networking and filler–elastomer interaction play a dominant role. The effects of filler loading on mechanical properties of vulcanizates were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3707–3712, 2006  相似文献   

5.
A series of polyurethane (PU) elastomers was prepared by the reaction of poly(?‐caprolactone) and 4,4′‐diphenylmethane diisocyanate, which was extended with a series of chain extenders (CEs) having 2–10 methylene units in their structure. The completion of the reaction was confirmed by Fourier transform infrared spectroscopy. The chemical structures of the synthesized PU samples were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy, and the thermal properties were determined by thermogravimetric analysis, DSC, and dynamic mechanical thermal analysis techniques. The mechanical properties were also studied and are discussed. The thermogravimetric analysis and DSC analysis showed that CE length had a considerable effect on the thermal properties of the prepared samples. The dynamic mechanical thermal analysis and damping peaks were also affected by the number of methylene units in the CE length. The elastomer extended with 1,2‐ethane diol exhibited optimum thermal properties, whereas the elastomer based on 1,10‐decane diol displayed the worst thermal properties. Tensile strength and elongation at break decreased with increasing CE length, whereas hardness showed the opposite trend. The glass‐transition temperature moved toward lower temperatures with increasing CE length. The decrease in the glass‐transition temperature and tensile properties were interpreted in terms of decreasing hard segments and increasing chain flexibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Poly(ε‐caprolactone) (PCL) has been widely investigated for tissue engineering applications because of its good biocompatibility, biodegradability, and mechanical properties; however hydrophobic nature of PCL has been a colossal obstacle toward achieving scaffolds which offer satisfactory cell attachment and proliferation. To produce highly hydrophilic electrospun fibers, PCL was blended with pluronic P123 (P123) and the resulted electrospun scaffolds physiochemical characteristics such as fiber morphology, thermal behavior, crystalline structure, mechanical properties, and wettability were investigated. Moreover molecular dynamic (MD) simulation was assigned to evaluate the blended and neat PCL/water interactions. Presence of P123 at the surface of electrospun blended fibers was detected using ATR‐FTIR analysis. P123 effectiveness in improving the hydrophilicity of the scaffolds was demonstrated by water contact angel which experienced a sharp decrease from 132° corresponding to the neat PCL to almost 0° for all blended samples. Also a steady increase in water uptake ratio was observed for blended fibers as P123 content increased. The 90/10 blend ratio had the maximum tensile strength, elongation at break and crystallinity percentage. Therefore 90/10 blend ratio of PCL/P123 can balance the mechanical properties and bulk hydrophilicity of the resulted electrospun scaffold and would be a promising candidate for tissue engineering application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43345.  相似文献   

7.
In this study, nylon 12 (5–25 wt %) was melt blended with a supramolecular thermally repairable thermoplastic elastomer (ATA‐POE), which was generated by crosslinking of maleated polyethylene‐octene elastomer (mPOE) with 3‐amino‐1,2,4‐triazole (ATA), in an internal mixer. The effect of nylon 12 content on the phase morphology, thermomechanical properties, and thermally triggered scratch repairing effects of the ATA‐POE/nylon 12 blends was investigated. Scanning electron microscopy results showed that nylon 12 formed a dispersed phase with submicron scale in a continuous ATA‐POE phase. Fourier transform infrared spectroscopy and differential scanning calorimetry analysis revealed that there are extensive hydrogen bonding interactions between the ATA‐POE and nylon 12 in the blends, which was manifested by a decrease in the melting temperature of each polymer component. Tensile and dynamic mechanical test showed that tensile modulus increased with increasing nylon 12 contents in the blend with maintaining fairly high elastic recoverability. Furthermore, the blends containing up to 20 wt % of nylon 12 showed good scratch repairing effects when they are heated above melting temperature of the ATA‐POE phase in the blend. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41511.  相似文献   

8.
A procedure for the fabrication of aluminum‐coated reflective PDMS thin films having a low surface roughness and high reflectance is presented. Elastomer films are prepared by spin‐coating on a sacrificial layer that permits subsequent release from the substrate. Appropriate surface treatments are established for the deposition of a thin, highly reflective metal coating. The composite membranes are deposited on an ethylene glycol based ferrofluid to fabricate a new ferrofluidic deformable mirror. Surface deformations of a few micrometers can be produced with low strength magnetic fields. The reflective elastomer membranes do not alter the rheological behavior of the ferrofluid in magnetic fields and thus offer new perspectives for the use of ferrofluidic mirrors in adaptive optics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44542.  相似文献   

9.
Ultra‐high temperature ceramics (UHTCs) exhibit a unique combination of excellent properties that makes them promising candidates for applications in extreme environments. Various UHTCs are needed due to diverse harsh conditions that UHTCs are faced with in different applications. Due to structural similarity to ZrB2, possible high melting point and possible protective oxide scale formed in oxygen rich and water vapor environments, REAlB4 (RE: rare‐earth) is suggested a good candidate for UHTCs. In the present work, temperature‐dependent mechanical and thermal properties of both α‐YAlB4 (YCrB4 type, space group Pbam) and β‐YAlB4 (ThMoB4 type, space group Cmmm) were investigated by first principles calculations in combination with quasi‐harmonic approach. Due to the structural similarity between α‐YAlB4 and β‐YAlB4, their properties are very similar to each other, which are approximately transverse isotropic with properties in (001) plane being almost the same and differing from properties out of (001) plane. The results reveal that resistance to normal strain in (001) plane (~460 GPa) is higher than that along [001] direction (~320 GPa) and thermal expansion in (001) plane (~10 × 10?6 K?1) is lower than that along [001] direction (~17 × 10?6 K?1), which is because the stiff boron networks are parallel to (001) plane. The average thermal expansion coefficient is around 12 × 10?6 K?1, which is fairly high among UHTCs and compatible with metallic frameworks. The combination of high thermal expansion coefficient and protective oxidation scale forming ability suggest that REAlB4 is promising for practical applications not only as high‐temperature structural ceramic but also as oxidation resistant coating for alloys.  相似文献   

10.
In this study, the crystallization behavior of the β‐isotactic polypropylene (β‐iPP) samples nucleated by a rare earth based β‐nucleating agent (β‐NA) WBG‐II and a metal salts compound β‐NA NAB83 (denoted as WPP and NPP, respectively) under different cooling conditions were comparatively investigated. The thermal conditions such as the cooling rate, isothermal crystallization temperature, isothermal crystallization time, and the subsequent cooling to room temperature. The results of WAXD, SEM, and nonisothermal crystallization reveal that under the same processing conditions, the crystallite size of NPP is smaller, which arrange more compactly as compared with WPP. Meanwhile, NPP has shorter crystallization rate and higher β‐nucleation selectivity, but WPP can crystallization at wider temperature range. The results of isothermal crystallization showed that NPP has higher selectivity and higher β‐nucleation efficiency, which favors the formation of high proportion of β‐phase at the isothermal crystallization temperature of 110–130°C with and without subsequent cooling; WPP has lower selectivity, which can only induce high content of β‐phase under isothermal crystallization without subsequent cooling to 25°C. In tuning the crystallization behavior and the properties of β‐PP, the joint influence of the efficiency and selectivity of the β‐NA, and the thermal conditions should be taken into consideration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40115.  相似文献   

11.
Polystyrene/α‐zirconium phosphate (PS/OZrP) nanocomposites were prepared based on the organically modified α‐ZrP(OZrP) with hexadecyltrimethyl ammonium bromide (C16) by solvothermal technique and solution refluxing. The structure of the PS/OZrP composites was characterized by X‐ray diffraction and high‐resolution electronic microscopy. The thermal behaviors of the composites obtained were investigated by thermogravimetric analysis. The maximum decomposition temperatures (Tmax) of PS/OZrP nanocomposites prepared by solvothermal method increased gradually from 431 to 458°C with the increase of the OZrP loading from 0 to 20 wt %, and the amounts of the charred residue at 600°C (char wt %) had a remarkable increase from 1.6 to 17.1 wt %, respectively. Moreover, the TG results of the nanocomposites prepared by solvothermal method have more obvious enhancement in the thermal stabilities and especially in the amount of charred residue at 600°C (char wt %), which has a double increase from 4.2 to 8.5 wt % at the content of 10 wt % OZrP than by solution refluxing. All results suggested that the solvothermal method is an effective way for the preparation of PS/OZrP nanocomposites with the intercalated nanostructure, which led to the obviously improved thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 122:593–598, 2011  相似文献   

12.
Crosslinked α‐methylstyrene and acrylonitrile (MStAN) copolymer particles in a latex form were synthesized by free radical emulsion polymerization. The particles took a spherical shape with an average size of 53.1 nm in a narrow distribution. When filled into styrene‐butadiene rubber (SBR), nitrile‐butadiene rubber (NBR), and natural rubber (NR), the MStAN nano‐particles exhibited excellent reinforcing capabilities and the best in NBR. By the employment of heat treatment, mechanical properties of the MStAN‐filled SBR composites had got remarkable further improvements. But mechanical properties, together with the morphology, of the MStAN‐filled NBR composites, varied little after heat treatment, which, however, divulged the naturally good compatibility between the MStAN particles and the NBR matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Organically modified zirconium phosphate (OZrP) was prepared by cation exchange of natural counterions with hexadecyltri‐n‐butylphosphonium bromide. Subsequently, OZrP and expandable graphite (EG) were incorporated into polyurethane elastomer (PUE), and the thermal stability and flame retardancy of PUE composites were investigated. The thermogravimetric analysis indicated that partial substitution of EG with OZrP could improve both the thermal stability and char yield of PUE composites. The cone calorimetry and limiting oxygen index test showed that partial substitution of EG with OZrP could further enhance the flame retardancy of PUE composites and presented an excellent synergistic effect. Moreover, the char residue of PUE composites was analyzed by X‐ray photoelectron spectroscopy and laser Raman spectroscopy. Their results indicated that the synergistic effect of the physical barrier to prevent transmission of heat and mass between condensed and gas phases. Therefore, the further combustion of the nether material could be inhibited, which created better flame retardancy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45188.  相似文献   

14.
Polar modification of poly(ethylene‐co‐octene) (POE) elastomer was carried out with a relatively new approach. Poly(ethylene‐co‐acrylic acid) (EAA) was taken as the modifier and POE with a calculated amount of EAA were coextruded with dicumyl peroxide (DCP; used as a crosslinker). The majority of the compositions showed the existence of a crosslinked EAA phase inside POE, although increasing DCP concentrations and extrusion temperatures were possibly capable of crosslinking either of the phases, as observed with a model composition. All of the samples were soft and light in nature. The best composition was the one that contained 13.3 wt % EAA; that composition showed excellent surface polarity and superior mechanical properties. Detailed solvent swelling experiments also yielded the best results for that particular composition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The thermal conductivity of insulating polymers can be increased by the addition of conductive fillers. One potential market for these thermally conductive resins is for fuel cell bipolar plates. In this study, various amounts of three different carbon fillers (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid crystal polymer. Because the resulting composites were anisotropic, they were tested for both through‐plane and in‐plane thermal conductivities. The effects of single fillers and combinations of the different fillers were studied via a factorial design. Each single filler caused a statistically significant increase in composite through‐plane and in‐plane thermal conductivities at the 95% confidence level, with synthetic graphite causing the largest increase. All of the composites containing combinations of the different fillers caused statistically significant increases in the composite through‐plane and in‐plane thermal conductivities. It is possible that thermally conductive pathways were formed that linked these carbon fillers, which resulted in increased composite thermal conductivity. Composites containing 70, 75, and 80 wt % synthetic graphite and the composite containing all three fillers (2.5 wt % carbon black, 65 wt % synthetic graphite, and 5 wt % carbon fiber) had in‐plane thermal conductivities of 20 W m?1 K?1 or higher, which is desirable for bipolar plates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The hydrosilylation reaction of α,ω‐bis(trimethylsiloxy)methylhydridesiloxane to styrene and α‐methylstyrene in the presence of the catalyst platinum hydrochloric acid (a 0.1M solution in tetrahydrofuran) at a 1:35 ratio of initial compounds at various temperatures (80–90°C) was investigated, and methylsiloxane oligomers with aryl‐substituted groups in the side chain were obtained. Complete hydrosilylation of all active ?Si? H groups did not take place. The hydrosilylation reaction order, activation energies. and rate constants were determined. The synthesized oligomers were characterized by 1H, 13C, and IR spectral data. For the full characterization of the hydride addition of methylhydridesiloxane to styrene by the quantum‐chemical half‐empiric Austin Model 1 (AM1) method for all initial, intermediate, and final products, in the modeling of the hydrosilylation reaction of methyldimethoxysilane to styrene, the heats of formation, energy changes of the system depending on the change of distance between ?C? Si? bonds, and the charge values on the atoms, dipole moments, and bond orders were calculated. The synthesized oligomers were characterized by gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, and wide‐angle X‐ray diffraction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 388–394, 2006  相似文献   

17.
Chopped sisal fibers and finely powdered high‐density polyethylene were surface functionalized using dichlorosilane (DS) under radio frequency (RF)‐plasma conditions and characterized by electron spectroscopy for chemical analysis (ESCA) and fluorescence labeling techniques. A high‐capacity (10 L), rotating, 13.56 MHz, electrodeless plasma installation, specially designed to allow the uniform surface modification of powdery and particulate matter of irregular shape, was used. A three‐factor fractional experimental design was employed to evaluate the effect of RF‐power, pressure, and reaction time on the ESCA‐based relative atomic composition of plasma‐treated samples. It was demonstrated that ? SiHxCly functionalities are present on plasma‐exposed surfaces and these functionalization reactions can be controlled by selecting proper plasma parameters. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2145–2154, 2002  相似文献   

18.
The effects of both the rice husk ash (RHA) loading and fumed silica (FS) loading on the structure, thermal stability, and electrical properties of acrylonitrile–butadiene rubber (NBR) composites were studied. The filler loading were chosen to be 5 and 20 phr for RHA and 5 and 30 phr for silica. Also, the effect of the γ‐irradiation dose (25 kGy) on these parameters was investigated. The structure and thermal stability were studied with X‐ray diffraction and thermogravimetric analysis techniques. Furthermore, some electrical parameters, such as the direct‐current electrical conductivity (σdc), activation energy (Ea), dielectric constant (?′), and dielectric loss (?″), were determined. The incorporation of both RHA and FS resulted in improved thermal stability after γ irradiation at 25 kGy. The loading of FS on NBR was shown to decrease σdc, ?′, and ?″ and increase Ea. On the other hand, the loading of RHA showed the opposite trend. Finally, γ irradiation of NBR composites filled with both fillers decreased the values of σdc, ?′, and ?″ for all the samples, which followed the trend for the unirradiated composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In this research, the influence of adding α‐cellulose powder to styrene–butadiene rubber (SBR) compounds was investigated. Physicomechanical properties of SBR–α‐cellulose composites, including tensile strength, elongation, Young's modulus, tear strength, hardness, abrasion, resilience, and compression set, before and after ageing, were determined and analyzed. Young's modulus, hardness, and compression set increased and elongation and resilience decreased with increasing α‐cellulose loading in the composites, whereas tensile strength, tear strength, and abrasion resistance initially increased at low α‐cellulose concentration (5 phr), after which these properties decreased with increasing α‐cellulose content. Lower loadings of α‐cellulose (5 phr) showed better results than higher loadings, given that tensile strength, tear strength, and abrasion resistance increased at low α‐cellulose concentration. Theoretical prediction of elastic modulus was carried out using rule of mixtures, Hashin, Kerner, and Halpin–Tsai equations. Calculated results show that these equations are not suitable for accurate prediction for the work carried out. However, these models can be used with confidence for the prediction of elastic modulus because experimental results are higher than the calculated values. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2203–2211, 2005  相似文献   

20.
Synergistic effect of copper and multiwalled carbon nanotube on thermal and mechanical properties of high‐density polyethylene (HDPE)‐matrix composite was evaluated. Attrition mill was employed to prepare the hybrid powder. Reinforcing the polymer‐matrix was carried out using different contents of simultaneously (Sim) and separately (Sep) milled powders as hybrid fillers. X‐ray diffraction and microscopy results show different trends of particle size for Sep and Sim affected by both milling time and volume fraction ratio. Thermal characterization indicates that conductivity was enhanced by 90% and thermal expansion was reduced to 53% of neat HDPE. Young's modulus and tensile strength were improved by 7.8 and 1.22 times of neat HDPE, respectively. Also, characteristics of Sim‐reinforced composites exhibited better correlated relation with milling time compared with erratic behavior of Sep. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45397.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号