首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
软木纤维增强PP复合材料的研究   总被引:9,自引:0,他引:9  
采用软木纤维作为增强材料提高聚丙烯性能。为了改善软木纤维和聚丙烯母体之间的相容性,用马来酸酐接枝聚丙烯(MAPP)对软木纤维进行接枝处理,用MAPP或用三元乙丙橡胶(EPDM)对软木纤维进行改性处理。结果表明,与未经处理木纤维的复合材料相比,三种处理方法都使复合材料的热性能、加工性能和力学性能有了较大的提高。用MAPP接枝和用MAPP表面处理木纤维的方法比用EPDM表面处理木纤维的方法在提高复合材料热性能、加工流动性和拉伸强度方面更为显著。用EPDM表面处理木纤维在改善复合材料的冲击强度、断裂伸长率上更明显。此外,木纤维在复合材料中的浓度对复合材料其它性能的影响,以及MAPP接枝木纤维和MAPP处理木纤维的不同实验结果也进行了评价。  相似文献   

2.
Ink‐eliminated sludge flour (IESF), a waste residue from the recycling treatment of waste paper, is a promising new kind of filler for thermoplastic polymers with a good price/performance ratio and advantages for environmental protection. In this study, high‐impact polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were chosen as a polymer matrix and a coupling agent, respectively, for the preparation of IESF/PP composites, and the structures and properties of the obtained composites were also investigated. The experimental results revealed that IESF not only induced the crystallization orientation of PP along the b axis but also had a restraining effect on the formation of the β phase during the recrystallization of PP from the melt; the addition of MAPP further strengthened this effect to some extent. In addition, the proper addition of MAPP was helpful for improving the thermal stability of the IESF/PP composites. With the strengthening of the interfacial interaction between the IESF and PP matrix by MAPP, the resultant efficient stress transfer from the PP matrix to the IESF particles led to increased tensile and flexural strength. However, the original greater rigidity of MAPP, with respect to PP, reduced the toughness of the composites and caused some negative effects on the impact strength and the elongation at break. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2320–2325, 2004  相似文献   

3.
The mechanical properties and morphology of polypropylene/wood flour (PP/WF) composites with different impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. Two different ethylene/propylene/diene terpolymers (EPDM) and one maleated styrene–ethylene/butylene–styrene triblock copolymer (SEBS–MA) have been used as impact modifiers in the PP/WF systems. All three elastomers increased the impact strength of the PP/WF composites but the addition of maleated EPDM and SEBS gave the greatest improvements in impact strength. Addition of MAPP did not affect the impact properties of the composites but had a positive effect on the composite unnotched impact strength when used together with elastomers. Tensile tests showed that MAPP had a negative effect on the elongation at break and a positive effect on tensile strength. The impact modifiers were found to decrease the stiffness of the composites. Scanning electron microscopy showed that maleated EPDM and SEBS had a stronger affinity for the wood surfaces than did the unmodified EPDM. The maleated elastomers are, therefore, expected to form a flexible interphase around the wood particles giving the composites better impact strength. MAPP further enhanced adhesion between WF and impact-modified PP systems. EPDM and EPDM–MA rubber domains were homogeneously dispersed in the PP matrix, the diameter of domains being between 0.1–1 μm. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1503–1513, 1998  相似文献   

4.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Conifer fibers were used to reinforce polypropylene (PP). To improve the compatibility between the conifer fibers and the PP matrix, the fibers were either grafted with maleated PP (MAPP), treated by adding MAPP, or mixed with ethylene/propylene/diene terpolymer (EPDM). The treatments resulted in improved processing, as well as improvements in the thermal and mechanical properties of the resultant composites compared with the composites filled with untreated conifer fibers. Moreover, MAPP grafting and MAPP treating displayed more obvious benefits than EPDM treating in terms of thermal properties, processing flowability, and tensile strength improvements. EPDM treating also produced more significant benefits than either MAPP grafting or MAPP treating in terms of impact strength and tensile elongation improvements. These improvements were attributed to surface coating of the fibers when EPDM was used. In addition, the effect of the concentration of the conifer fibers on the properties of the composites and the difference between MAPP grafting and MAPP treating were evaluated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2833–2841, 2001  相似文献   

6.
余旺旺  刘芹  张莹  杨晨  雷文 《中国塑料》2020,34(10):6-11
研究了马来酸酐接枝聚丙烯(MAPP)、乙烯丙烯酸共聚物(EAA)处理对聚丙烯(PP) /小麦秸秆粉(WSP)复合材料性能的影响。结果表明,随着体系中MAPP质量份数的增加,PP/WSP的拉伸强度和弯曲强度均逐渐增大,但冲击强度却先增加后减小,复合材料达到塑化峰的时间逐渐延长;使用EAA后,无论体系中是否已经使用了MAPP,PP/WSP的拉伸、弯曲和冲击强度均可得以提高,特别对于未使用MAPP的体系,效果更加明显,可分别提高65.04 %、45.42 %和6.75 %,储能模量增加,表面疏水性增强,平衡扭矩从13.9 N·m降至11.8 N·m,吸水尺寸变化率及吸水率下降,吸水平衡时间缩短;使用EAA可改善PP/WSP中WSP与PP间的界面结合,改善PP/WSP力学性能、热稳定性能、表面疏水性能、尺寸稳定性能和加工性能,降低其吸水率。  相似文献   

7.
The effect of two compatibilizers, i.e. ethylene diamine dilaurate (EDD) and maleic anhydride grafted polypropylene (MAPP) on the mechanical properties, water absorption, morphology, and thermal properties of silica‐filled polypropylene (PP/Sil) composites were studied. The results show that the tensile, impact and flexural strengths (up to 2 php), Young's modulus, and elongation at break (Eb) increased with increasing EDD content. However, increasing MAPP content increases the tensile strength, Young's modulus, impact and flexural strengths, and water absorption resistance. At a similar compatibilizer content, EDD exhibits higher Eb, impact and flexural strengths but lowers tensile strength, Young's modulus, and water absorption resistance compared with MAPP. Scanning electron microscopy study of tensile fractured surfaces exhibits the evidence of better silica‐PP adhesion with MAPP and EDD compared with the similar composites but without compatibilizer. Fourier transform infra red spectra provide an evidence of interaction between EDD or MAPP with PP/Sil composites. Termogravimetry analysis results indicate that the addition of EDD or MAPP slightly increases the thermal stability of PP/Sil composites. Differential scanning calorimetry also indicates that PP/Sil composites with EDD or MAPP have higher heat fusion (ΔHf(com)) and crystallinity (Xcom) than similar composites but without compatibilizer. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
In order to expand the application of polypropylene (PP) composites in cryogenic environment, short carbon fiber (SCF) was used as the reinforcing phase and the surface of it was modified by graphene oxide (GO), and the maleic anhydride grafted PP (MAPP) was also used to enhance the interface compatibility between the fiber and the matrix. The effects of the GO-modified SCF and the MAPP on the impact properties and dimensional stability of PP composites at cryogenic temperature (CT) (− 196°C) were investigated by systematic analysis of the interfacial properties and microstructure of the composites. The results show that the impact strength of the PP composites was effectively increased by 106.7% (CT) and 170.7% (room temperature), respectively, compared to pure PP. In addition, the transverse and longitudinal shrinkage of PP composites can be reduced to only 0.15% and 0.1%, respectively. The cryogenic impact strength and dimensional stability of PP composites has been greatly improved, which makes PP composites in the application under cryogenic environment is more promising.  相似文献   

9.
Composites consisting of a polypropylene (PP) and highly crystalline cellulosic microfibers were prepared by melting mixing with the maleic anhydride grafted polypropylene (MAPP) as a compatibilizer. The results show that even with addition of a small amount of MAPP, the mechanical properties of the composites improved dramatically. The improvement is attributed to stronger interfacial adhesion caused by esterification between anhydride groups of MAPP and hydroxyl groups of cellulose, although the number of the ester bonds is too few to be detected by FT‐IR spectroscopy. It was also found that tensile strength and Young's modulus increased with the increasing MAPP contents in the composites, and the optimum MAPP content is about 10 wt% for the composite with cellulose content of 30 wt%. SEM indicated that the interfacial adhesion between cellulose fibers and PP improved in MAPP‐containing composites. The DSC results showed that MAPP has little effect on melting and crystallization temperatures of PP in the composites. POLYM. COMPOS., 26:448–453, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
In this study, the hybrid composites were prepared by stacking jute/PP nonwoven and flax/MAPP woven fabrics in defined sequences. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as matrix materials. Jute and flax fibers were treated with alkali solution in order to improve the interface properties of the resultant composites. The mechanical properties of these hybrid composites were analyzed by means of tensile, flexural, and drop‐weight impact tests. The effect of fabric stacking sequence on the mechanical properties of the composites was investigated. The stacking of nonwovens at the top and in alternate layers has resulted in maximum flexural strength, flexural stiffness, and impact force. It was also shown that hybrid composites have improved tensile, flexural, and impact properties in comparison to neat PP matrix. POLYM. COMPOS., 36:2167–2173, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
《Polymer Composites》2017,38(8):1749-1755
Wood flour (WF)‐filled composites based on a polypropylene (PP)/recycled polyethylene terephthalate (r‐PET) matrix were prepared using two‐step extrusion. Maleic anhydride grafted polypropylene (MAPP) was added to improve the compatibility between polymer matrices and WF. The effects of filler and MAPP compatibilization on the water absorption, mechanical properties, and morphological features of PP/r‐PET/WF composites were investigated. The addition of MAPP significantly improved mechanical properties such as tensile strength, flexural strength, tensile modulus, and flexural modulus compared with uncompatibilized composites, but decreased elongation at break. Scanning electron microscopic images of fracture surface specimens revealed better interfacial interaction between WF and polymer matrix for MAPP‐compatibilized PP/r‐PET/WF composites. MAPP‐compatibilized PP/r‐PET/WF composites also showed reduced water absorption due to improved interfacial bonding, which limited the amount of absorbable water molecules. These results indicated that MAPP acts as an effective compatibilizer in PP/r‐PET/WF composites. POLYM. COMPOS., 38:1749–1755, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
Composites of polypropylene (PP) with mica powder and impact modifiers were produced by internal mixer. A major drawback in the use of mica‐filled PP is its low impact resistance. In the present study, the effect of the maleated PP (MAPP) and impact modifiers was evaluated on the composite properties separately and together. Thus, two different styrene‐ethylene/butylene‐styrene triblock copolymers (SEBS) and one ethylene‐propylene‐diene terpolymer (EPDM) have been used as impact modifiers in the PP‐mica composites. Addition of MAPP had a negative effect on the composite notched impact strength and elongation at break but had a positive effect on tensile strength when used together with impact modifiers. All three elastomers increased the impact strength of the PP‐mica composites but the addition of maleated SEBS (SEBS‐MA) granted the greatest improvement in impact strength. It was inferred from the scanning electron microscopy that SEBS‐MA had a stronger interaction with mica surface than the other impact modifiers. POLYM. COMPOS., 27:614–620, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
In this study, morphology, and dynamic and mechanical properties of polypropylene–mica (PP–Mica) composites were investigated. To enhance the adhesion between PP and mica, maleic anhydride‐grafted PP (MAPP) and treated mica with silane coupling agent were used. MAPP (as a compatibilizer) and silane coupling agent (as a filler surface modifier) caused an interfacial bonding in the mica filled polypropylene composites. The effect of mica content, MAPP, and treated mica with silane coupling agent on the morphological properties were investigated by Scanning Electron Microscopy (SEM). The results showed that with increasing MAPP or silane coupling agent, dispersion of filler and adhesion between PP and filler were improved. Mechanical data showed that with increasing MAPP and mica treated with silane coupling agent, tensile modulus and flextural strength of composites were enhanced. Dynamic rheological behavior of composites was also investigated within the domain of linear viscoelasticity. The rheological observations indicated that the complex viscosity, storage and loss moduli increased, and tan δ decreased with increasing mica content. POLYM. COMPOS. 27:491–496, 2006. © 2006 Society of Plastics Engineers.  相似文献   

14.
Binary composites of high‐crystalline fibrous cellulose with polypropylene (PP) or maleic anhydride‐grafted polypropylene (MAPP) were prepared by melt‐mixing with different contents of cellulose from 0 to 60 wt %. Ternary composites of cellulose with PP and MAPP were also prepared to investigate the effects of MAPP as a compatibilizer between cellulose and PP. Scanning electron microscopy revealed that the addition of MAPP generates strong interactions between a PP matrix and cellulose fibers: All cellulose fibers are encapsulated by layers of the matrix and connected tightly within the matrix. Thus, the tensile strength and Young's modulus of MAPP‐containing composites increase with an increase in MAPP and cellulose content, in contrast to the decrease in tensile strength of a PP‐based binary composite with an increase in cellulose. Cellulose fibers act as a nucleating agent for the crystallization of PP, which is promoted by the addition of MAPP through an increase of the crystallization temperature of PP in the composite. Accordingly, both cellulose and MAPP facilitate the thermooxidative stability of PP composites in the following order: MAPP/cellulose > PP/MAPP/cellulose > PP/cellulose > PP. Relative water absorption increases with an increase in cellulose content, decreasing with the addition of MAPP. MAPP‐containing cellulose composites have high potential for applications as environmentally friendly materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 337–345, 2003  相似文献   

15.
In this article, a kind of degradable composite was prepared from bamboo fiber (BF), poly lactic acid (PLA), and polypropylene (PP). The mechanical and thermal properties were characterized by the universal testing machine, thermogravimetric analysis, differential scanning calorimetry. In order to improve the compability between BF and polymer matrix several modification on the surface of BF were explored and compared. Moreover, a compatibilizer (maleated PP) was applied to further increase compatibility between the fiber and matrix. It is found that the thermal stability of BF/PP/PLA composites decreased with the increase of maleated polypropylene (MAPP) content. When 5% MAPP was used the tensile strength, flexural strength, and impact strength of composites reached 33.73, 47.18 MPa, and 3.15 KJ/m2, with an increase by 13, 11.7, and 23.5%, respectively, compared with the composites without MAPP. The improvement of mechanical properties is attributed to the fact that irregular grooves and cracks induced by the modification of BF facilitate the infiltration of polymer into fiber due to the strong capillary effect. Furthermore, BF/PP/PLA composites are potential to be used in 3D printing. POLYM. ENG. SCI., 59:E247–E260, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
This work focused on two difficulties associated with preparation of polypropylene/wood flour (PP/WF) composites, viz. the compatibility of PP with WF and processing of the composites with high melt viscosity. Maleic anhydride‐grafted polypropylene (MAPP) was used in the preparation of PP composites to provide the compatibility between polymer and filler. Hyperbranched polyester (HBPE) was incorporated to check feasibility of it as a processing aid in the same. The PP/WF composites were formulated by melt compounding on a Brabender Plastograph EC. Blending effect of compatibilizer and processing aid HBPE on PP/WF biocomposites have been carried out on the basis of torque analysis, mechanical properties, morphology, and thermal stability. The investigation showed that HBPE improves the processibility of PP/WF composites than MAPP with respective to torque value. The mechanical and thermal properties slightly vary with change in relative proportion of MAPP and HBPE. J. VINYL ADDIT. TECHNOL., 24:179–184, 2018. © 2016 Society of Plastics Engineers  相似文献   

17.
Polypropylene/jute fiber (PP‐J) composites with various concentrations of viscose fibers (VF) as impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. The composite materials were manufactured using direct long fiber thermoplastic (D‐LFT) extrusion and compression molding. The effect of fiber length, after the extrusion process, on composites mechanical performance and toughness was investigated. The results showed that the incorporation of soft and tough VF on the PP‐J improved the energy absorption of the composites. The higher impact strength was found with the addition of 10 wt % of the impact modifier, but the increased concentration of the impact modifier affected the tensile and flexural properties negatively. Similarly, HDT values were reduced with addition of viscose fibers whereas the addition of 2 wt % of maleated polypropylene significantly improved the overall composite properties. The microscopic analysis clearly demonstrated longer fiber pullouts on the optimized impact modified composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41301.  相似文献   

18.
Recently, cellulose fiber–thermoplastic composites have played an important role in some applications. Plastics reinforced with cellulose and natural fibers have been widely studied. However, composites with regenerated cellulose have rarely been investigated. In this study, the lyocell fiber of Lenzing AG (cellulose II) and its raw material a bleached hardwood pulp (cellulose I) were used as reinforcement materials. The mechanical and thermal properties of polypropylene (PP) reinforced with pulp and lyocell fibers were characterized and compared with regard to the content of the fiber and the addition of maleated polypropylene (MAPP). PPs with cellulose I or II as a reinforcement material had similar mechanical properties. However, when MAPP was used as coupling agent, the mechanical properties of the composites were different. The crystallinity of the composites were determined by differential scanning calorimetry. Cellulose I (pulp) promoted the crystallization of PP, whereas cellulose II did not. MAPP reduced this effect in cellulose I fibers, but it induced crystallization when cellulose II (lyocell) was used as a reinforcement material. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 364–369, 2006  相似文献   

19.
Vinyl polysiloxane microencapsulated ammonium polyphosphate (MAPP) was prepared by a sol-gel method using vinyltrimethoxysilane as a precursor to improve its thermal stability and hydrophobicity. The MAPP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analyzer (TGA). The results showed that ammonium polyphosphate (APP) was successfully coated with vinyl polysiloxane. MAPP and pentaerythritol (PER) were used together to improve the flame retardancy of polypropylene (PP). The flame retardant properties of PP composites were investigated by limiting oxygen index (LOI), UL-94 test, TGA and SEM. When the MAPP was added as a flame retardant, with PER as a char forming agent, the LOI of PP/MAPP/PER composites was 33.1%, and it reached the UL-94 V-0 level. The results also demonstrated that the flame retardant properties of PP/MAPP/PER composites were better than those of PP/APP/PER composites at the same loading. Moreover, the addition of flame retardant and carbon forming agent could promote the crystallization behavior of PP.  相似文献   

20.
The main goal of this study was to analyze the effect of process additives, that is, maleated polypropylene (MAPP), and a nucleating agent on the viscoelastic properties of different types of extruded polypropylene (PP) wood plastic composites manufactured from either a PP homopolymer, a high crystallinity PP, or a PP impact copolymer using dynamic mechanical thermal analysis. The wood plastic composites were manufactured using 60% pine wood flour and 40% PP on a Davis‐Standard Woodtruder?. Dynamic mechanical thermal properties, polymer damping peaks (tan δ), storage modulus (E′), and loss modulus (E″) were measured using a dynamic mechanical thermal analyzer. To analyze the effect of the frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of ?20 to 100°C, at four different frequencies (1, 5, 10, and 25 Hz) and at a heating rate of 5°C/min. From these results, the activation energy of the various composites was measured using an Arrhenius relationship to investigate the effect of MAPP and the nucleating agent on the measurement of the interphase between the wood and plastic of the extruded PP wood plastic composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1638–1644, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号