首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A targeting gene carrier for cancer‐specific delivery was successfully developed through a “multilayer bricks‐mortar” strategy. The gene carrier was composed of adamantane‐functionalized folic acid (FA‐AD), an adamantane‐functionalized poly(ethylene glycol) derivative (PEG‐AD), and β‐cyclodextrin‐grafted low‐molecular‐weight branched polyethylenimine (PEI‐CD). Carriers produced by two different self‐assembly schemes, involving either precomplexation of the PEI‐CD with the FA‐AD and PEG‐AD before pDNA condensation (Method A) or pDNA condensation with the PEI‐CD prior to addition of the FA‐AD and PEG‐AD to engage host–guest complexation (Method B) were investigated for their ability to compact pDNA into nanoparticles. Cell viability studies show that the material produced by the Method A assembly scheme has lower cytotoxicity than branched PEI 25 kDa (PEI‐25KD) and that the transfection efficiency is maintained. These findings suggest that the gene carrier, based on multivalent host–guest interactions, could be an effective, targeted, and low‐toxicity carrier for delivering nucleic acid to target cells.  相似文献   

2.
In this work, a brushed polycationic polymer with primary and tertiary amino groups was designed and synthesized for gene delivery. The backbone polymer was poly(N‐hydroxyethylacrylamide) (PHEAA) by the atom transfer radical polymerization (ATRP), and then 3,3′‐diaminodipropylamine (DPA) was grafted onto the PHEAA by the reaction between hydroxyl and the secondary amine. A brushed PHEAA‐DPA cationic polymer was achieved with primary and tertiary amino groups and the ratio was 2 : 1. The PHEAA100‐DPA and PHEAA200‐DPA could effectively condense plasmid DNA (pDNA) at the weight ratio of vector/DNA of 0.6 and 0.4, respectively. The cytotoxicity of PHEAA‐DPA/pDNA to COS‐7 cells and HepG‐2 cells within the weight ratio of vector/DNA of 16 : 1 was lower than that of PEI25k, and cell viability decreased with the increment of the weight ratio. Although the cytotoxicity of PHEAA100‐DPA/pDNA was lower than PHEAA200‐DPA/pDNA, the latter possessed higher transfection efficiency at the same weight ratio both in COS‐7 cells and HepG‐2 cells, compared with PEI25k, the transfection efficiency of PHEAA200‐DPA/pDNA was better in COS‐7 cells and HepG‐2 cells with the weight ratio of 12 : 1 and 10 : 1, respectively. These results showed that the PHEAA‐DPA with less cytotoxicity and higher gene transfection efficiency has a broad perspective in gene therapy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40468.  相似文献   

3.
A polyethylenimine‐poly(hydroxyethyl glutamine) copolymer (PEI‐PHEG) was designed and synthesized as a gene delivery system. The molecular structure of PEI‐PHEG was characterized using nuclear magnetic resonance. Moreover, PEI‐PHEG/pDNA complexes were fabricated and characterized by gel retardation assay, particle size analysis, and zeta potential analysis. The transfection efficiency and cytotoxicity of PEI‐PHEG were evaluated using human cervical carcinoma (HeLa), human embryonic kidney (HEK293), and murine colorectal adenocarcinoma (CT26) cells in vitro. The results show that PEI‐PHEG could effectively form positively charged nano‐sized particles with pDNA; the particle size was in a range of 130.2 to 173.0 nm and the zeta potential was in a range of 27.6 to 41.0 mV. PEI‐PHEG exhibited much lower cytotoxicity and higher gene transfection efficiency than PEI‐25K with different cell lines in vitro. An animal test was also conducted on a Lewis Lung Carcinoma tumor model in C57/BL6 mice by using subcutaneous intratumoral administration. The results show that in vivo transfection efficiency of PEI‐PHEG was improved greatly compared with that of commercial PEI‐25K. These results demonstrate that PEI‐PHEG can be a potential nonviral vector for gene delivery systems both in vitro and in vivo. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
A novel vector for gene delivery was synthesized. Here the ovalbumin (OVA) acts as a core and low‐molecular‐weight PEI600 was grafted to its surface. The finally product was characterized (1H‐NMR, UV, and TGA) and its biophysical properties such as DNA condensing, particle size, and zeta potential were determined. The agarose gel assay indicated that OVA‐PEI600 could efficiently condense plasmid DNA. Its particle size was about 150 nm and zeta potential was around +20 mV. The MTT assay showed that the cytotoxicity of OVA‐PEI600 was less than PEI25 kDa. Its transfection efficiency in SKOV‐3 and HepG2 cell lines was higher than that of PEI600 and comparable to PEI25 kDa. In vivo, luciferase activity could be tested in liver, spleen, kidney, lung, and blood serum, respectively, in mice. The core‐shell structure of OVA‐PEI600 provided a novel strategy for nonviral gene delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Lysozyme-loaded polymeric composite microparticles were successfully coprecipitated by solution-enhanced dispersion by supercritical CO2 (SEDS), starting with a homogeneous organic solvent solution of lysozyme/poly(L -lactide)/poly(ethylene glycol) (lysozyme/PLLA/PEG). The effects of different drug loads (5, 8, and 12% w/w), PLLA Mw (10, 50, 100, and 200 kDa), PEG contents (0, 10, 30, and 50% PEG/(PLLA+PEG) w/w), and PEG Mw (400, 1000, and 4000 kDa) on the surface morphology, particle size, and drug release profile of the resulting composite microparticles were investigated. The results indicate that the size of the microparticles decreased and the rate of drug release increased with an increase in drug load, PEG content, or PEG Mw; the particle size first increased and then decreased with an increase in PLLA Mw, and the drug release was controlled by both particle size and PLLA Mw. The Fourier transform infrared spectrometer analysis and circular dichroism spectra measurement reveal that no significant changes occurred in the molecular structures during the SEDS processing, which is favorable to the production of protein–polymer composite microparticles for a protein drug delivery system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Recently, theranostic candidates that provide a combination of gene delivery and image diagnosis have attracted much interest in medical research. However, there are still many challenges for their clinical applications, such as uncontrollable gene delivery, high cytotoxicity, low transfection efficiency and reduced image contrast. Herein, redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles (IONs@rPEI) were prepared for both efficient gene delivery and magnetic resonance (MR) imaging. Firstly, crosslinked rPEI was synthesized by Michael addition reaction with N,N‐bis(acryloyl)cystamine, dopamine and low‐molecular‐weight branched PEI. The rPEI was then coated onto IONs by ligand exchange reaction forming IONs@rPEI. The physicochemical properties of the IONs@rPEI, such as chemical structure, size, zeta potential and DNA condensation ability, were investigated. In addition, a rapid degradation of the as‐prepared nanoparticles was observed, which was triggered by reducing glutathione via destruction of disulfide linkages suggesting a potential controllable DNA release in tumor cells. In MR imaging detection, the IONs@rPEI had a high T2 relaxivity of 81 L mmol?1 s?1 indicating a potential usage as MR imaging contrast reagent. In cell assay, the IONs@rPEI exhibited low cytotoxicity and good transfection efficiency. In conclusion, the as‐prepared crosslinked IONs@rPEI can be used as a promising technology platform for gene therapy and MR imaging in theranostics. © 2019 Society of Chemical Industry  相似文献   

7.
The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.  相似文献   

8.
pH‐sensitive nanogels (NGs) based on poly(aspartic acid‐graft‐imidazole)‐poly(ethylene glycol) were developed using linear PEG with different molecular weights (2000 and 4000 Da) as crosslinkers. The pH‐sensitive NGs showed reversible size changes during continuously alternating pH changes. The anticancer treatment potential of pH‐sensitive NGs was studied using a model drug, irinotecan (IRI). IRI‐loaded NGs (ILNs) showed different drug release kinetics in acidic versus neutral pH, in addition to pH‐dependent cytotoxicity. Due to its longer crosslinker, ILN 4 (crosslinked with PEG 4000) showed faster IRI release and a greater magnitude of IRI release than ILN 2 (crosslinked with PEG 2000), resulting in greater cytotoxicity against HCT 116 colorectal cancer cells. These pH‐sensitive NGs could potentially be used in cancer treatment by mediating the accumulation and release of IRI from ILNs in the acidic tumor environment and by reducing systemic toxicity due to reversible swelling–shrinkage. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46268.  相似文献   

9.
Stability of polyplex and safety are key factors to achieve stable gene transfection and high transfection efficiency. In this report, a star‐like amphiphilic biocompatible cyclodextrin‐poly(ε‐caprolactone)‐poly(2‐(dimethylamino) ethyl methacrylate), β‐CD‐g‐(PCL‐b‐PDMAEMA) x copolymer, consisting of biocompatible cyclodextrin core, biodegradable and stable poly(ε‐caprolactone) PCL segments, cationic and hydrophilic PDMAEMA blocks, is synthesized to achieve high efficiency of gene transfection with enhanced stability, due to the micelle formation by hydrophobic PCL segments. In comparison with polyethylenimine (PEI‐25k), a golden standard for nonviral vector gene delivery, this copolymer shows higher encapsulated plasmid desoxyribose nucleic acid (pDNA) ability and the persistence of transgene expression. More interestingly, this gene delivery platform by β‐CD‐g‐(PCL‐b‐PDMAEMA) x shows lower toxicity but better gene transfection efficiency at low N/P ratios, indicating high potential in gene therapy applications.  相似文献   

10.
Degradable poly(ester amine) (PEA) based on poly(ethylene glycol) dimethacrylate (PMEG) and polyethylenimine (PEI) were synthesized by Michael addition reaction. The ratios of PEI to PMEG in PEAs were 0.99, 1.02, and 1.07 with corresponding number‐average molecular weight of 1.3 × 104, 1.2 × 104, and 0.9 × 104, respectively. Degradation rate of PEA at pH 7.4 was higher than that at pH 5.6. Good plasmid condensation and protection ability was shown when N/P molar ratio of PEA to DNA was above 15 (N: nitrogen element in PEA, P: phosphate in DNA). PEA/DNA complexes had positive zeta potential, narrow size distribution, good dispersity, and spheric shape with size below 250 nm when N/P ratio was above 30, suggestion of their endocytosis potential. Compared with PEI 25 KDa, the PEAs showed essential nontoxic to HeLa, HepG2 and 293T cells. With an increase in the molecular weight of PMEG, the transfection efficiency of PEAs in HeLa, HepG2 and 293T showed a tendency to decrease as well as the percent decrease of gene transfection efficiency with serum. The mechanism of PEA‐mediated gene transfection was attributed to “proton sponge effect” of PEI in the PEA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The synthesis is reported of novel hybrid hydrogels based on ethylenediaminetetraacetic acid dianhydride and poly(ethylene glycol) (PEG) with octa‐aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA‐POSS) as a nano‐crosslinker under solvent‐free conditions. The molecular weight of PEG was varied between 600 and 1000 Da. The synthesized hydrogels were characterized using various techniques. Further, the swelling behavior and antibacterial activity of the hydrogels and release kinetics of metronidazole (MTZ) as a model drug from them were evaluated. Experimental results demonstrate that hydrogels with tunable properties can be synthesized by varying the PEG molecular weight and type of crosslinker (hybrid or organic). Among the synthesized hybrid hydrogels, that crosslinked by OA‐POSS with long PEG chains (1000 Da) showed the highest swelling degree (2000%), drug encapsulation efficiency (88%) and extent of MTZ release (96%). © 2018 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Transient gene expression (TGE) provides a rapid way to generate recombinant protein biologics for pre‐clinical assessment. Human embryonic kidney (HEK293) cells have traditionally been used for TGE; however, there is demand from industry for efficient, high‐producing TGE systems that utilize Chinese hamster ovary (CHO) cells. A polyethyleneimine (PEI) ‐based TGE process has been developed for CHO cells using an episomal expression system to generate enhanced recombinant protein titers. RESULTS: A five‐fold improvement in monoclonal antibody (mAb) volumetric productivity was achieved by examining key parameters including transfection medium, cell density, transfection reagent, DNA:reagent ratio, the time of transfer to mild hypothermia and feeding strategy post‐transfection. The Epi‐CHO system allowed for a six‐fold expansion in culture volume post‐transfection without significantly affecting specific productivity. This system generates 400% more mAb per µg of plasmid DNA when compared with a non‐episomal system. In addition, the use of X‐box binding protein 1 to enhance secretion capacity and provide further improvements in mAb production with TGE was investigated. CONCLUSION: Through optimization of key parameters, our results demonstrate the development of a low‐cost, high‐yielding, episomal TGE system that may be adopted during pre‐clinical biologic drug development. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.  相似文献   

14.
The reduction-triggered degradable poly(methacrylic acid-co-N,N-bis(acryloyl)cystamine)/polyethyleneimine (P(MAA-co-BAC)/PEI) microcapsules were prepared by distillation–precipitation polymerization for delivery of anti-cancer drug and gene. N,N-bis(acryloyl)cystamine (BAC) as a crosslinker containing a disulfide bond can be triggered by reductive agents, such as glutathione (GSH) and dithiothreitol (DTT), to endow the functional microcapsules with reduction-triggered drug release. The P(MAA-co-BAC)/PEI microcapsules were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), laser particle size analyzer and elemental analysis. The degradable behavior of microcapsules was investigated by analysis of UV-vis spectroscopy. The controlled drug release behavior for P(MAA-co-BAC)/PEI microcapsules was strongly dependent on the absence/presence of GSH and the pH values with doxorubicin hydrochloride (DOX) as a model drug molecule. The in vitro gene transfection ability was evaluated by Hela cells with the transfection of plasmid DNA (pDNA) encoded with green fluorescent protein (GFP) and the transfection efficiency was determined by confocal fluorescence microscopy. Furthermore, the cytotoxicities of (P(MAA-co-BAC)/PEI) microcapsules before and after loading of DOX were assessed via WST-1 assay. The P(MAA-co-BAC)/PEI microcapsules provide the potential novel vectors for delivery of drugs and genes, promising for future applications in anticancer drug and gene combined therapy.  相似文献   

15.
The microcapsules in drug delivery systems can prevent degradation of drugs and help to control the release rate. To enhance the targeted delivery effect of the microcapsules to cancer cells, some specific ligands such as folic acid (FA) are necessarily further conjugated. Herein, covalent poly(allylamine hydrochloride) (PAH) multilayers were fabricated on CaCO3 microparticles under the cross‐linking of glutaraldehyde, which were further immobilized with different amount of FA molecules via the spacer of diamino terminated poly(ethylene glycol) (PEG). As a comparison study, four types of microcapsules, i.e., the PAH capsules, the PAH capsules grafted with PEG, and the PAH capsules conjugated with two different amount of FA via the PEG spacer were prepared. Their chemical and physical structures were confirmed by infrared spectroscopy, UV–vis spectroscopy and scanning electron microscopy. In vitro cell culture found that the cellular uptake of the PAH capsules grafted with PEG was reduced significantly compared with that of the pure PAH capsules. The FA‐modified microcapsules could be selectively delivered into HepG2 tumor cells which overexpress FA receptors but not into the endothelial cells. The number of HepG2 cells which ingested the FA‐conjugated capsules showed a positive correlation with FA amount. The results indicate that these FA conjugated capsules have a high selectivity to be delivered to tumor cells, endowing them with a larger opportunity functioning as targeted delivery vehicle for anticancer drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. The efficiency of the cross-linked PEIs during in vitro delivering plasmid containing enhanced green fluorescent protein (EGFP) gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell and other cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery of the EGFP plasmid/cross-linked PEI complexes into mice and by estimating the EGFP expression in animal muscles. Compared to commercially available 25-kDa branched PEI, the cross-linked PEIs reported here could mediate more efficient expression of reporter gene than the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.  相似文献   

17.
Amphiphilic linear–hyperbranched polymer poly(ethylene glycol)–branched polyethylenimine–poly(?‐caprolactone) (PEG‐PEI‐PCL) was synthesized by progressively conjugating PEG (one chain) and PCL (multi‐chains) to PEI (hyperbranched architecture) with a yield of 87%. PEG‐PEI‐PCL forms nano‐sized uniform spherical micelles by self‐assembly in water. The micelles had an average diameter of 56 nm determined using dynamic light scattering and 35 nm observed from transmission electron microscopy images. PEG‐PEI‐PCL was used as a stabilizer of platinum nanoparticles (PtNPs) for the first time. The particle diameter of PEG‐PEI‐PCL‐stabilized PtNPs was 7.8 ± 1.4 nm. Amphiphilic (hydrophilic–hydrophilic–hydrophobic) and hyperbranched (linear–hyperbranched–grafted) structures enabled PtNPs to effectively stabilize and disperse in liquid‐phase synthesis. The highly disperse PtNPs in PEG‐PEI‐PCL micelles improved the catalytic activity for the reduction of 4‐nitrophenol with a catalytic yield of near 100%. © 2016 Society of Chemical Industry  相似文献   

18.
Biodegradable polymers and the hydrogels have been increasingly applied in a variety of biomedical fields and pharmaceutics. α,β‐Poly(N‐2‐hydroxyethyl‐DL ‐aspartamide), PHEA, one of poly(amino acid)s with hydroxyethyl pendants, are known to be biodegradable and biocompatible, and has been studied as an useful biomaterial, especially for drug delivery, via appropriate structural modification. In this work, hydrogels based on PHEA were prepared by two‐step reaction, that is, the crosslinking of polysuccinimide, the precursor polymer, with oligomeric PEG or PEI‐diamines and the following nucleophilic ring‐opening reaction by ethanolamine. Soft hydrogels possessing varying degrees of gel strength could be prepared easily, depending on the amount of different crosslinking reagents. The swelling degrees, which were in the range of 10–40 g–water/dry gel, increased somewhat at higher temperature, and also at alkaline pH of aqueous solution. A typical hydrogel remained almost unchanged for 1 week, at 37°C in phosphate buffer of pH 7.4, and then seemed to degrade slowly as time. A porous scaffold could be fabricated by the freeze drying of water‐swollen gel. The PHEA‐based hydrogels have potential for useful biomaterial applications including current drug delivery system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3741–3746, 2003  相似文献   

19.
Redox‐active stimuli have gained a great deal of interest as an indicating factor for designing bioresponsive matrices in gene delivery. Hence, a wide range of gene carriers has been designed incorporating the redox‐stimuli characteristics. The most important type of gene carriers is the class of redox responsive polymers. Among them, disulfide incorporated redox‐responsive polyethyleneimine (PEI) and its derivatives, as a result of their outstanding DNA entrapping characteristics and their intrinsic endosomolytic activity, have attracted considerable attention in recent studies. The review presents the main developments of the characteristics of PEI derivatives and their applications in gene delivery. It is found that despite the uniquely stated characteristics, the noncleavable structure of conventional PEI (high molecular weight PEI: 25k), which makes it a nondegradable material, as well as the frequent inclusion of positively charged amino groups, which reduces its blood circulation period, render conventional PEI a very toxic material for gene‐delivery applications. The extremely high cellular toxicity of conventional PEI has restricted its administration for real in‐vivo physiological media. Recent studies have shown that employing low molecular weight PEI cross‐linked by disulfide linkages (SS‐PEI) and assembling low molecular weight disulfide linkages PEI (LMW SS‐PEI) with bio‐detachable anionic groups were two successful approaches for increasing bioavailability of the PEI‐based gene carriers, while keeping outstanding cellular transfection. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42096.  相似文献   

20.
Different compositional parameters of poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) triblock copolymers (PLGA-PEG) were varied to analyze their effect on gel formation and mechanical properties. Parameters such as hydrophilic/hydrophobic ratio (PLGA/PEG ratio), lactic acid/glycolic acid ratio (LA/GA ratio), PEG molecular weight (PEG Mw), polymer solution concentration, copolymer molecular weight (Mw), and polydispersity index (PDI) were studied in this work. For copolymers with PEG Mw of 1500 Da, gelation temperature (34–37 °C) was affected by D,L-LA/GA ratio and Mw; while modulus was affected by LA/GA ratio, Mw, and Mn. Based on the parametric study, an injectable, thermoresponsive hyaluronic acid (HA) delivery platform was designed for ocular applications. PLGA-PEG copolymers with D,L-LA/GA ratio of 15/1, PLGA/PEG ratio of 2/1, PEG Mw of 1500 Da, and Mw of about 6 KDa gelled at 35 °C, were optically transparent, had a modulus less than 350 Pa and were used for HA release studies. This work also demonstrates, for the first time, an extended and controlled release of HA, beyond 2 weeks, from injectable hydrogels modified with a noncovalent interacting agent, poly(L-lysine). Smaller PLL chains slowed down the HA release kinetics, while larger PLL chains produced a release profile similar to the nonmodified hydrogels. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48678.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号