首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrolysis and kinetic behavior of banana stem (BS) were investigated using thermogravimetric analysis (TGA). The behavior of mass loss demonstrated that pyrolysis process of BS appeared in three stages with a conversion range of 0–0.20, 0.20–0.90, and 0.90–1, respectively. The reaction mechanism of BS pyrolysis followed the 3D diffusion model, with an apparent activation energy range of 130.63–192.10 kJ/mol and a pre-exponential factor range of 2.42×107–4.10 × 1010 s–1. Stages 1, 2, and 3 were mainly attributed to pyrolysis of hemicellulose, cellulose, and lignin with mean activation energies of 139.09, 155.41, and 188.71 kJ/mol, respectively. The experimental data obeyed the iso-conversional model well with correlation coefficients (R2) over than 0.9928.  相似文献   

2.
Wei-Hsin Chen  Po-Chih Kuo 《Energy》2011,36(11):6451-6460
In recent years, torrefaction, a mild pyrolysis process carried out at the temperature range of 200-300 °C, has been considered as an effective route for improving the properties of biomass. Hemicellulose, cellulose, lignin and xylan are the basic constituents in biomass and their thermal behavior is highly related to biomass degradation in a high-temperature environment. In order to provide a useful insight into biomass torrefaction, this study develops the isothermal kinetics to predict the thermal decompositions of hemicellulose, cellulose, lignin and xylan. A thermogravimetry is used to perform torrefaction and five torrefaction temperatures of 200, 225, 250, 275 and 300 °C with 1 h heating duration are taken into account. From the analyses, the recommended values of the order of reaction of hemicellulose, cellulose, lignin and xylan are 3, 1, 1 and 9, respectively, whereas their activation energies are 187.06, 124.42, 37.58 and 67.83 kJ mol−1, respectively. A comparison between the predictions and the experiments suggests that the developed model can provide a good evaluation on the thermal degradations of the constituents, expect for cellulose at 300 °C and hemicellulose at 275 °C. Eventually, co-torrefaction of hemicellulose, cellulose and lignin based on the model is predicted and compared to the thermogravimetric analysis.  相似文献   

3.
The pyrolysis-catalytic steam reforming of six agricultural biomass waste samples as well as the three main components of biomass was investigated in a two stage fixed bed reactor. Pyrolysis of the biomass took place in the first stage followed by catalytic steam reforming of the evolved pyrolysis gases in the second stage catalytic reactor. The waste biomass samples were, rice husk, coconut shell, sugarcane bagasse, palm kernel shell, cotton stalk and wheat straw and the biomass components were, cellulose, hemicellulose (xylan) and lignin. The catalyst used for steam reforming was a 10 wt.% nickel-based alumina catalyst (NiAl2O3). In addition, the thermal decomposition characteristics of the biomass wastes and biomass components were also determined using thermogravimetric analysis (TGA). The TGA results showed distinct peaks for the individual biomass components, which were also evident in the biomass waste samples reflecting the existence of the main biomass components in the biomass wastes. The results for the two-stage pyrolysis-catalytic steam reforming showed that introduction of steam and catalyst into the pyrolysis-catalytic steam reforming process significantly increased gas yield and syngas production notably hydrogen. For instance, hydrogen composition increased from 6.62 to 25.35 mmol g?1 by introducing steam and catalyst into the pyrolysis-catalytic steam reforming of palm kernel shell. Lignin produced the most hydrogen compared to cellulose and hemicellulose at 25.25 mmol g?1. The highest residual char production was observed with lignin which produced about 45 wt.% char, more than twice that of cellulose and hemicellulose.  相似文献   

4.
Treatment of corn (Zea mays L.) cob under mild reaction conditions (60 °C and atmospheric pressure) in 88% formic acid was an effective method for separating cellulose from hemicellulose and lignin components in lignocellulose. Most of the hemicellulose degradation and lignin removal occurred within the first 90 min. After 6 h treatment, the decomposition of hemicellulose and the recovery of lignin were over 85% and 70%, respectively. Multi-level structures of lignin and solid residues were further characterized by FTIR, XRD, TG/DTG, SEM and SEC. Peaks attributable to lignin or hemicellulose disappeared in FTIR spectra, indicating complete removal of these two components. The remaining solid residues had a higher crystalline index. The major pyrolysis temperature of corncob was increased after formic acid treatment; the molecular weight (MW) of cellulose in solid residues was higher than that in intact cobs, whereas the hemicellulose remaining in the pulp had a lower MW than the original. Lignin was extracted in an esterified form designated as formic acid lignin (FAL). FAL had two thermal decomposition temperatures (Td) at 277 °C and 385 °C. The MW of lignin increased following formic acid treatment, which may make it a better starting material for chemical syntheses.  相似文献   

5.
The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8–20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 °C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl?1 glucose and 3.4 gl?1 xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk.  相似文献   

6.
《能源学会志》2019,92(5):1348-1363
In order to understand the pyrolysis mechanism, reaction kinetic and product properties of biomass and select suitable agricultural and forestry residues for the generation desired products, the pyrolysis and catalytic pyrolysis characteristics of three main components (hemicellulose, cellulose, and lignin) of biomass were investigated using a thermogravimetric analyzer (TGA) with a fixed-bed reactor. Fourier transform infrared spectroscopy (FTIR) and elemental analysis were used for further characterization. The results showed that: the thermal stability of hemicellulose was the worst, while that of cellulose was higher with a narrow range of pyrolysis temperatures. Lignin decomposed over a wider range of temperatures and generated a higher char yield. After catalytic pyrolysis over HZSM-5 catalyst, the conversion ratio increased. The ratio for the three components was in the following order: lignincellulose < biomass < xylan. The Starink method was introduced to analyze the thermal reaction kinetics, activation energy (Ea), and the pre-exponential factor (A). The addition of HZSM-5 improved the reactivity and decreased the activation energy in the following order: xylan (30.54%) > biomass(15.41%) > lignin (14.75%) > cellulose (6.73%). The pyrolysis of cellulose gave the highest yield of bio-oil rich in levoglucosan and other anhydrosugars with minimal coke formation. Xylan gave a high gas yield and moderate yield of bio-oil rich in furfural, while lignin gave the highest solid residue and produced the lowest yield of bio-oil that was rich in phenolic compounds. After catalytic pyrolysis, xylan gave the highest yield of monocyclic aromatic hydrocarbons, 76.40%, and showed selectivity for benzene and toluene. Cellulose showed higher selectivity for xylene and naphthalene; however, lignin showed enhanced for selectivity of C10 + polycyclic aromatic hydrocarbons. Thus, catalytic pyrolysis method can effectively improve the properties of bio-oil and bio-char.  相似文献   

7.
Influence of mineral matter on pyrolysis of palm oil wastes   总被引:2,自引:0,他引:2  
The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K2CO3, Na2CO3, CaMg(CO3)2, Fe2O3, and Al2O3, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K2CO3, demonstrated negligible influence. Adding K2CO3 inhibited the pyrolysis of hemicellulose by lowering its mass loss rate by 0.3 wt%/°C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K2CO3 added, the weight loss of cellulose in the lower temperature zone (200-315 °C) increased greatly and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K2CO3 (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K2CO3 (at C/W = 0.05-0.1), due to the catalytic effect of K2CO3 lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass—palm oil waste (in the forms of original material and material pretreated through water washing or K2CO3 addition)—was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 °C, while K2CO3 addition lowered the peak temperature of pyrolysis by . It was therefore concluded that the obvious catalytic effect of adding K2CO3 might be attributed to certain fundamental changes in terms of chemical structure of hemicellulose or decomposition steps of cellulose in the course of pyrolysis.  相似文献   

8.
油棕废弃物及生物质三组分的热解动力学研究   总被引:4,自引:0,他引:4  
主要利用热重分析仪(TG)对油棕废弃物和生物质的三组分(半纤维素,纤维素和木质素)的热解特性进行了系统研究,对比分析了热解特性,计算了其热解动力学参数,并研究了升温速率对生物质热解特性的影响。研究发现半纤维素和纤维素易于热降解而木质素难于热解;油棕废弃物的热解可以化分为:干燥、半纤维素热解、纤维素热解和木质素热解4个阶段;生物质的热解反应主要是一级反应,油棕废弃物的活化能很低,约为60kJ/kg;升温速率对生物质影响很大,随升温速率加快,生物质热解温度升高,热解速率降低。  相似文献   

9.
Gasification of cellulose, hemicellulose, lignin and three types of real biomass was conducted using an updraft fixed-bed reactor to investigate the effects of temperature (in the range of 920–1220 °C) on the yield and chemical composition of the produced syngas. The experimental results showed that the gasification products of cellulose and hemicellulose were similar to each other, but they were different from those of lignin; it is likely due to the difference in volatile compounds. Cellulose and hemicellulose can be gasified more rapidly producing more CO and CH4 and less H2 and CO2 than lignin, and the real biomass fell in between. Biomass with more lignin produced more hydrogen than others. These differences were resulted from the relative amount of lignin, hemicellulose, and cellulose in the biomass. Linear superposition method was used to simulate the gasification characteristics of real biomass and it showed a certain linear correlation between the simulation and experimental data.  相似文献   

10.
11.
The formation of liquid intermediates and the distribution of products were studied under slow and fast pyrolysis conditions. Results indicate that monomers are formed from lignin oligomeric products during secondary reactions, rather than directly from the native lignin. Lignin from Douglas-fir (Pseudotsuga menziesii) wood was extracted using the milled wood enzyme lignin isolation method. Slow pyrolysis using a microscope with hot-stage captured the liquid formation (>150 °C), shrinking, swelling (foaming), and evaporation behavior of lignin intermediates. The activation energy (Ea) for 5–80% conversions was 213 kJ mol−1, and the pre-exponential factor (log A) was 24.34. Fast pyrolysis tests in a wire mesh reactor were conducted (300–650 °C). The formation of the liquid intermediate was visualized with a fast speed camera (250 Hz), showing the existence of three well defined steps: formation of lignin liquid intermediates, foaming and liquid intermediate swelling, and evaporation and droplet shrinking. GC/MS and UV-Fluorescence of the mesh reactor condensate revealed lignin oligomer formation but no mono-phenols were seen. An increase in pyrolytic lignin yield was observed as temperature increased. The molar mass determined by ESI-MS was not affected by pyrolysis temperature. SEM of the char showed a smooth surface with holes, evidence of a liquid intermediate with foaming; bursting from these foams could be responsible for the removal of lignin oligomers. Py-GC/MS studies showed the highest yield of guaiacol compounds at 450–550 °C.  相似文献   

12.
《能源学会志》2020,93(5):1833-1847
The high concentration of oxygenated compounds in pyrolytic products prohibits the conversion of hemicellulose to important biofuels and chemicals via fast pyrolysis. Herein CaO and HZSM-5 was developed to convert xylan and LDPE to valuable hydrocarbons by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and elucidate the reaction mechanism were also investigated in detail. The results indicated that xylan/LDPE copyrolysis was more complicated than pyrolysis of the individual components. LDPE hindered the thermal decomposition and aromatic hydrocarbon formation from xylan at temperatures under 350 °C and had a synergistic effect at high temperatures. 50% LDPE was proven to be more beneficial than other percentages for the formation of monocyclic aromatic hydrocarbons. Simultaneously, the addition of CaO/HZSM-5 significantly reduced the reaction Ea and increased the reaction rate. CaO can effectively improve the deoxygenation and aromatization reaction, enhancing the yield and selectivity of aromatics to a certain extent. The maximum yield of hydrocarbons (96.01%), mono-aromatic hydrocarbons (88.53%) and SBTXE (85.79%) were obtained at a CaO/HZSM-5 ratio of 1:2, a pyrolysis temperature of 450 °C, a catalytic temperature of 550 °C, a catalyst dose of 1:2 and a xylan-to-LDPE ratio of 1:1 via an ex situ process. The system was dominated by toluene, xylene and alkyl benzene. Diels-Alder reactions of furans and hydrocarbon pool mechanism of nonfuranic compounds improved aromatic formation. This study provides a fundamental for recovering energy and chemicals from pyrolysis of hemicellulose.  相似文献   

13.
《能源学会志》2019,92(5):1303-1312
Ignition behaviour of biomass is an essential knowledge for plant design and process control of biomass combustion. Understanding of ignition characteristics of its main chemical components, i.e. cellulose, hemicellulose, lignin and their mixtures will allow the further investigation of ignition behaviour of a wider range of biomass feedstock. This paper experimentally investigates the influences of interactions among cellulose, hemicellulose and lignin on the ignition behaviour of biomass by thermogravimetric analysis. Thermal properties of an artificial biomass, consisting of a mixture of the three components will be studied and compared to that of natural biomass in atmospheres of air and nitrogen in terms of their ignition behaviour. The results showed that the identified ignition temperatures of cellulose, hemicellulose and lignin are 410 °C, 370 °C and 405 °C, respectively. It has been found that the influence of their interactions on the ignition behaviour of mixtures is insignificant, indicating that the ignition behaviour of various biomass feedstock could be predicted with high accuracy if the mass fractions of cellulose, hemicellulose and lignin are known. While the deficiencies of the determined mutual interactions would be further improved by the analytical results of the activation energies of cellulose, hemicellulose, lignin, their mixtures as well as natural and artificial biomass in air conditions.  相似文献   

14.
In this work, the effect of temperature on the char yield of untreated rice husk, cellulose removed (hemicellulose + lignin), hemicellulose removed (cellulose + lignin), and lignin removed (cellulose + hemicellulose) is investigated. The work compares the performance of acid and alkaline hydrolysis in the context of lignin removal as well. The effect of hemicellulose-lignin, cellulose-lignin, and cellulose-hemicellulose on char yield during slow pyrolysis of rice husk is also studied. The study reveals that only low temperatures favor char yield. Alkaline hydrolysis effects better lignin removal than acid hydrolysis. The effect of hemicellulose-lignin on char yield is more than cellulose-lignin and cellulose-lignin.  相似文献   

15.
The nitrogen-doped carbon nanofiber derived from low and high proportion polyaniline doped bacterial cellulose (BC) was obtained via polymerization followed by pyrolysis. The resulting products were named LN-BC and HN-BC accordingly. Platinum nanoparticles modified LN-BC and HN-BC was then prepared (Pt@LN-BC and Pt@HN-BC) via electrochemical deposition. The morphologies of LN-BC and HN-BC indicated that the BC lost its nanowire structure after polyaniline modification and pyrolysis under nitrogen atmosphere. Platinum nanoparticles with diameters ranging from 3 to 5 nm can be well dispersed in the HN-BC support. The HER performance of Pt@LN-BC and Pt@HN-BC was fully investigated. Electrochemical results showed that the Pt-based catalysts had better HER activity than the Pt free catalysts in acid, indicating the HER activity was mainly from Pt. Besides, Pt@HN-BC had better HER activity than Pt@LN-BC in acid, suggesting N-doping rate was an important factor in enhancing HER activity. And the 10Pt@HN-BC (deposition for 10 s) with 4.38 wt% Pt loading was the best HER catalyst among the Pt@HN-BC. The onset potential (@ ?1 mA cm?2) and overpotential (@ ?10 mA cm?2) of the 10Pt@HN-BC in 0.5 M H2SO4 is ?18 and ?47 mV, respectively. The corresponding Tafel slope was ?35 mV dec?1, which is quite comparable to that of Pt/C (10 wt%). The electrochemical double layer capacitance (Cdl) and turnover frequency (TOF) were estimated and presented in the work. Long-term stability test confirmed that the 10Pt@HN-BC had excellent stability, which was important for practical application.  相似文献   

16.
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy (NIRS) and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin (ADL), acid detergent fibre (ADF), and neutral detergent fibre (NDF) from sample spectra. Results generated were subsequently converted to lignin, cellulose and hemicellulose content and used to assess the genetic and environmental variation in cell wall composition of Miscanthus and to identify genotypes which display quality traits suitable for exploitation in a range of energy conversion systems. The NIRS calibration models developed were found to predict concentrations with a good degree of accuracy based on the coefficient of determination (R2), standard error of calibration (SEC), and standard error of cross-validation (SECV) values. Across all sites mean lignin, cellulose and hemicellulose values in the winter harvest ranged from 76–115 g kg?1, 412–529 g kg?1, and 235–338 g kg?1 respectively. Overall, of the 15 genotypes Miscanthus x giganteus and Miscanthus sacchariflorus contained higher lignin and cellulose concentrations in the winter harvest. The degree of observed genotypic variation in cell wall composition indicates good potential for plant breeding and matching feedstocks to be optimised to different energy conversion processes.  相似文献   

17.
《Energy》1998,23(11):973-978
A method is proposed by which pyrolysis rates of biomass materials can be predicted from the species compositions in terms of the basic constituents (cellulose, hemicellulose and lignin) and their individual kinetic parameters. The activation energies, frequency factors and reaction orders for cellulose, hemicellulose and lignin have been determined in a conventional manner. The measured rates of pyrolysis of different biomass species (hazelnut, wood, olive husk and rice husk) compare well with literature data.  相似文献   

18.
As a continuation of the previous study on the thermal degradation behavior of tobacco stem, this work is focused on the kinetics of pyrolytic decomposition. Thermogravimetric analysis of tobacco stem samples was conducted under nitrogen atmosphere at different heating rates of 5, 10, 15, and 20°C/min at a temperature range of 25–1,000°C. The kinetic parameters, such as activation energy, pre-exponential factor, and reaction order, were determined by applying the Coats–Redfern method for the main pyrolysis occurred in the second zone by means of the decomposition of hemicellulose, cellulose, and lignin at a temperature range 180–540°C. In addition, the activation energy was calculated using various degradation models, including Kissinger, Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS). The average activation energy of tobacco stem was calculated to be 150.40, 230.76, 216.97, and 218.56 kJ/mol by the Kissinger, FR, FWO, and KAS models, respectively.  相似文献   

19.
The slow pyrolysis of biomass in the form of pine wood was investigated in a static batch reactor at pyrolysis temperatures from 300 to 720°C and heating rates from 5 to 80 K min−1. The compositions and properties of the derived gases, pyrolytic oils and solid char were determined in relation to pyrolysis temperatures and heating rates. In addition, the wood and the major components of the wood—cellulose, hemicellulose and lignin—were pyrolysed in a thermogravimetric analyser (TGA) under the same experimental conditions as in the static batch reactor. The static batch reactor results showed that as the pyrolysis temperature was increased, the percentage mass of solid char decreased, while gas and oil products increased. There was a small effect of heating rate on product yield. The lower temperature regime of decomposition of wood showed that mainly H2O, CO2 and CO were evolved and at the higher temperature regime, the main decomposition products were oil, H2O, H2, hydrocarbon gases and lower concentrations of CO and CO2. Fourier transformation infra-red spectroscopy and elemental analysis of the oils showed they were highly oxygenated. The TGA results for wood showed two main regimes of weight loss, the lower temperature regime could be correlated with the decomposition of hemicellulose and the initial stages of cellulose decomposition whilst the upper temperature regime correlated mainly with the later stages of cellulose decomposition. Lignin thermal decomposition occurred throughout the temperature range of pyrolysis.  相似文献   

20.
The effect of organosolv pretreatment on the structure of rice straw was analyzed under different treatment severities and solvent concentrations. At higher severities, on account of a greater fragmentation of less crystalline parts, including amorphous cellulose, hemicellulose, and lignin, the severer the pretreatment was, the higher the crystallinity index became; however, changes in the index was less tangible with a severity factor lower than 3.3. At the low to mild pretreatment temperatures (120 °C and 150 °C), higher ethanol concentrations led to the lower crystallinity index. Despite an increasing trend of crystallinity index at harsh conditions, SEM images indicated the formation of spherical droplets and pores on the treated rice straw, which is symptomatic of improved hydrolysis yields. A more detailed scrutiny of the flux patterns for the anaerobic metabolism of E. aerogenes revealed that the increase in both simple (glucose from 3 to 60 g l?1) and more complex (rice straw from 3.33 to 33.33 g l?1) substrate concentrations resulted in a lower hydrogen yield (54% and 77% reductions). Nonetheless, techno-economic assessments should be conducted to determine the optimum concentration. A preliminary economic evaluation of a simulated biorefinery showed due to the larger vessels and equipment, when the rice straw concentration in hydrolysis step decreased from 50 to 3.33 g l?1, the fixed capital investment sharply ascended by approximately 980% and, in contrast, the unit production cost decreased by 78%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号