首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, polyindene (PIn) and three PIn/organo‐montmorillonite (O‐MMT) nanocomposites namely K1: [PIn(94.5%)/O‐MMT(5.5%)], K2: [PIn(92.8%)/O‐MMT(7.2%)], and K3: [PIn(87.9%)/O‐MMT(12.1%)] were used to investigate the electrorheological (ER), creep‐recovery, and vibration damping characteristics. A volume fraction series (φ = 5–25%) of suspensions were prepared from the samples in silicone oil (SO). First, zeta (ζ)‐potentials and antisedimentation stabilities; second, ER properties of these nanocomposite/SO suspension systems were determined under externally applied electric field strengths. Besides, the effects of dispersed phase volume fraction, shear rate, electric field strength, and temperature onto ER performance of these suspensions were investigated and non‐Newtonian rheological behaviors were observed. The vibration damping capabilities of the suspensions were investigated using various rheological parameters on the electrorheometer and on an automobile shock absorber and a 66% vibration damping capacity were determined under an applied electric field strength, which is an important property from industrial point of view. Furthermore, the materials were subjected to creep and creep‐recovery tests and reversible viscoelastic deformations were determined. From the experiments carried out, the nanocomposites were classified as smart materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
In this article, Fe‐montmorillonite (Fe‐MMT) was synthesized by hydrothermal method. For the first time, Fe‐MMT was modified by cetyltrimethyl ammonium bromide (CTAB), and poly(methyl methacrylate)(PMMA)/Fe‐MMT nanocomposites were synthesized by emulsion polymerization. Then poly(methyl methacrylate)(PMMA)/natural montmorillonite (Na‐MMT) and PMMA/Fe‐MMT nanocomposites were compared by Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD) patterns, transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). By XRD and TEM, it was found out that the morphology of PMMA/Fe‐MMT nanocomposites was different from that of the PMMA/Fe‐MMT nanocomposites when the content of two types of clay was same in the PMMA matrix. It was possible that the presence of iron may lead to some radical trapping, which enhances intragallery polymerization to be developed to improve layer dispersion in PMMA/Fe‐MMT systems. In TGA curves, the thermal stability and residue at 600°C of PMMA/Fe‐MMT nanocomposites were higher than those of PMMA/Na‐MMT nanocomposites. Those dissimilarities were probably caused by structural Fe ion in the lattice of Fe‐MMT. POLYM. COMPOS., 27:49–54, 2006. © 2005 Society of Plastics Engineers  相似文献   

3.
In this study, synthesis of polythiophene (PT) and polythiophene/borax pentahydrate (PT/borax) conducting composite were carried out by in‐situ oxidative polymerization. The composite was subjected to various characterization techniques namely: FTIR, particle size, magnetic susceptibility, density, conductivity, dielectric, TGA, XRD, SEM, and zeta (ζ)‐potential measurements. The effects of time, pH, various surfactants, electrolytes and temperature on the ζ‐potential of PT and PT/borax composite were investigated. In a basic medium the ζ‐potential of the composite was observed to decrease up to ζ = −66.5 mV. The most effective surfactant on the ζ‐potential of the composite was sodium dodecyl sulfate, which reduced the value of ζ‐potential to ζ = −39.2 mV. It was concluded that the presence of mono‐valent (NaCl) salt has no impact on ζ‐potential whereas, di‐valent (BaCl2) salt shifted the ζ‐potential value to more positive regions. Elevated temperatures caused almost no change on the ζ‐potential of the composite. Also an electrorheological effect (a tremendous viscosity increase) was determined from the PT/borax colloidal systems under an externally applied electric field, and the results obtained will be discussed in the forthcoming article. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

4.
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373.  相似文献   

5.
A kind of novel polyether polyurethane (PU)/clay nanocomposite was synthesized using poly(tetramethylene glycol), 4,4′‐diphenylmethane diisocyanate (MDI), 1,6‐hexamethylenediamine, and modified Na+‐montmorillonite (MMT). Here, organicly modified MMT (O‐MMT) was formed by applying 1,6‐hexamethylenediamine as a swelling agent to treat the Na+‐MMT. The X‐ray analysis showed that exfoliation occurred for the higher O‐MMT content (40 wt %) in the polymer matrix. The mechanical analysis indicated that, when the O‐MMT was used as a chain extender to replace a part of the 1,2‐diaminopropane to form PU/clay nanocomposites, the strength and strain at break of the polymer was enhanced when increasing the content of O‐MMT in the matrix. When the O‐MMT content reached about 5%, the tensile strength and elongation at break were over 2 times that of the pure PU. The thermal stability and the glass transition of the O‐MMT/PU nanocomposites also increased with increasing O‐MMT content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 6–13, 2006  相似文献   

6.
In this study, first polyindole (PIN) was synthesized using FeCl3 as an oxidizing agent. Then, an organo‐montmorillonite (O‐MMT) was prepared from virgin montmorillonite (MMT) by cetyltrimethylammonium bromide (CTAB) quaternary ammonium salt. Further, PIN/O‐MMT conducting nanocomposite was prepared with 18% O‐MMT content. The samples of PIN, MMT, O‐MMT, and PIN/O‐MMT nanocomposite were characterized by FTIR spectroscopy, thermogravimetric analysis (TGA), X‐ray diffraction (XRD), elemental analysis, conductivity, magnetic susceptibility, density, particle size measurements, and scanning electron microscopy (SEM) method. Characterization results showed a successfully prepared PIN/O‐MMT nanocomposite having both intercalated and exfoliated structures. A series of concentrations (5–25%, m/m) were prepared from those above‐mentioned materials in silicone oil (SO) and their sedimentation stabilities were determined. The suspensions were subjected to an external electric field strength and electrorheological (ER) activity was observed. The effects of dispersed particle concentration, shear rate, external electric field strength, frequency, and temperature onto ER activities of these suspensions were investigated. Creep tests were applied to all the four suspensions and recoverable viscoelastic deformations observed. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

8.
A covalently functionalized organoclay was synthesized successfully through a condensation reaction of SiOH groups on the edge of montmorillonite (MMT) with acryloyl chloride followed by modification with hexadecyltrimethylammonium bromide (CTAB) via an ion‐exchange reaction. Fourier transform infrared confirmed that C?C groups had been grafted to MMT sheets. Wide‐angle X‐ray diffraction measurements showed that CTAB had intercalated into MMT interlayers. The content of bonded acryloyl chloride was 2.42 wt % in the functionalized organoclay according to thermogravimetric analysis. Polypropylene (PP) nanocomposites were prepared by melt mixing. Rheological measurements and morphology observations confirmed that PP nanocomposites containing the organoclay bearing C?C groups exhibited improved interfacial interaction between PP chains and MMT sheets. Thus, the PP nanocomposites showed not only higher storage modulus and complex viscosity values at low frequencies but also enhanced mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Poly(butylene adipate‐co‐terephthalate) (PBAT) nanocomposites films are prepared by a solution intercalation process using natural montmorillonite (MMT) and cetyltrimethylammonium bromide (CTAB)‐modified montmorillonite (CMMT). Cation exchange technique has been used for modification of MMT by CTAB and characterized by Fourier transform infrared analysis, thermo‐gravimetric analysis, and X‐ray diffraction (XRD) studies. CMMT gives better dispersion in the PBAT matrix than MMT and is confirmed by XRD and transmission electron microscopy. Because of better compatibility of CMMT, water vapor transmission rate of PBAT decreases more in the presence of CMMT than MMT. The biodegradability of PBAT and its nanocomposite films are studied in compost and from the morphological analysis it is apparent that the PBAT/CMMT shows a lower biodegradation rate in comparison to the PBAT/MMT. The antimicrobial activity of PBAT and its nanocomposite films is tested by an inhibition zone method. Because of the presence of the quaternary ammonium group of CTAB‐modified MMT, PBAT/CMMT nanocomposites show adequate antimicrobial activity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40079.  相似文献   

10.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by a new one‐pot technique, where the hydrophilic Na‐MMT layers were decorated with hydrophobic 1‐dodecyl‐3‐methylimidazolium hexafluorophosphate (C12mimPF6) ionic liquid in situ during melt blending with PMMA and intercalation of polymer chains took place subsequently. The in situ modification and intercalation of Na‐MMT were confirmed using X‐ray diffraction and transmission electron microscopy. The combination of the compatible C12mimPF6 with PMMA and the good dispersion of MMT layers at the nanoscale rendered the resultant PMMA/MMT nanocomposites with improved optical transparency, thermal stability and mechanical properties. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
A novel aromatic amine organo‐modifier synthesized in our previous work was used to treat montmorillonite (MMT) and the organo‐modified MMT was used to prepare poly(etherimide) (PEI)/MMT nanocomposites by a melt intercalation method. MMT treated by this amine exhibited large layer‐to‐layer spacing and a high ion‐exchange ratio (>95%). The nanocomposites were characterized with X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical analysis, a universal tester, thermogravimetric analysis, and by differential scanning calorimetry. The results of XRD and TEM showed that the nanocomposites formed exfoliated structures even when the MMT content was 10 wt %. When the MMT content was below 3 wt %, the PEI/MMT nanocomposites were strengthened and toughened at the same time. The nanocomposites also showed marked decreases in coefficient of thermal expansion and solvent uptake. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1857–1863, 2003  相似文献   

12.
In this study, montmorillonite (MMT)/poly(?‐caprolactone)‐based polyurethane cationomer (MMT/PCL‐PUC) nanocomposites were prepared and their mechanical properties, thermal stability, and biodegradability were investigated. PCL‐PUC has 3 mol % of quaternary ammonium groups in the main chain. The MMT was successfully exfoliated and well dispersed in the PCL‐PUC matrix for up to 7 wt % of MMT. The 3 mol % of quaternary ammonium groups facilitated exfoliation of MMT. The 1 wt % MMT/PCL‐PUC nanocomposites showed enhanced tensile properties relative to the pure PCL‐PU. As the MMT content increased in the MMT/PCL‐PUC nanocomposites, the degree of microphase separation of PCL‐PUC decreased because of the strong interactions between the PCL‐PUC chains and the exfoliated MMT layers. This resulted in an increase in the Young's modulus and a decrease in the elongation at break and maximum stress of the MMT/PCL‐PUC nanocomposites. Biodegradability of the MMT/PCL‐PUC nanocomposites was dramatically increased with increasing content of MMT, likely because of the less phase‐separated morphology of MMT/PCL‐PUC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A series of novel multifunctional poly (acrylic acid‐co‐acrylamide) (PAA‐AM)/organomontmorillonite (O‐MMT)/sodium humate (SH) superabsorbent composites were synthesized by the graft copolymerization reaction of partially neutralized acrylic acid and acrylamide on O‐MMT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. The superabsorbent composites were characterized by means of Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The effect of the relative weight ratio of SH to O‐MMT on the water absorbency was studied, and the results indicated that the best water absorbency of 591 g/g in distilled water was obtained when an O‐MMT content of 20 wt % and an SH content of 30 wt % were incorporated. The superabsorbent composite possessed a good capacity for water retention; even after 30 days, 24.4 wt % of water could still be saved by the sand soil containing 1.0 wt % superabsorbent composite. The results from this study show that the water absorbency of a superabsorbent composite is improved by the simultaneous introduction of O‐MMT and SH into a PAA‐AM network in comparison with the incorporation of only O‐MMT or SH. Also, in comparison with PAA‐AM/MMT/SH, an appropriate amount of O‐MMT can benefit the developed composites with respect to their water absorbency, salt resistance, and capacity for water retention in sand soil. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Poly(methyl methacrylate)/montmorillonite (MMT) nanocomposites were prepared by in situ bulk polymerization. The results showed that the silicone coupling agent affected the structure and properties of hybrid materials. XRD analysis showed that the dispersion of clay in nanocomposites with silicone‐modified organophilic MMT was more ordered than that in nanocomposites with unmodified organophilic MMT. The glass transition temperature (Tg) of the nanocomposites was 6–15°C higher and the thermal decomposition temperature (Td) was 100–120°C higher than those of pure PMMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2256–2260, 2003  相似文献   

15.
Poly(L ‐lactic acid)/o‐MMT nanocomposites, incorporating various amounts of organically modified montmorillonite (o‐MMT; 0–10 wt %), were prepared by solution intercalation. The montmorillonite (MMT) was organically modified with dilauryl dimethyl ammonium bromide (DDAB) by ion exchange. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) reveal that the o‐MMT was exfoliated in a poly(L ‐lactic acid), (PLLA) matrix. A series of the test specimens were prepared and subjected to isothermal crystallization at various temperatures (T1T5). The DSC plots revealed that the PLLA/o‐MMT nanocomposites that were prepared under nonisothermal conditions exhibited an obvious crystallization peak and recrystallization, but neat PLLA exhibited neither. The PLLA/o‐MMT nanocomposites (2–10 wt %) yielded two endothermic peaks only under isothermal conditions at low temperature (T1), and the intensity of Tm2 (the higher melting point) was proportional to the o‐MMT content (at around 171°C). The melting point of the test samples increased with the isothermal crystallization temperature. In the Avrami equation, the constant of the crystallization rate (k) was inversely proportional to the isothermal crystallization temperature and increased with the o‐MMT content, especially at low temperature (T1). The Avrami exponent (n) of the PLLA/o‐MMT nanocomposites (4–10 wt %) was 2.61–3.56 higher than that of neat PLLA, 2.10–2.56, revealing that crystallization occurred in three dimensions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
New microbicidal polyamides were prepared by the reaction of 5‐phenyl‐1,3,4,‐oxadiazole‐2‐thiol, 5‐phenyl‐1,3,4‐oxadiazole‐2‐amine, and 5‐(4‐chlorophenyl)?1,3,4‐thiadiazole‐2‐thiol with ethyl chloroformate followed by polycondensation with polyoxypropylenetriamine (Jeffamine T403). The polyamides were modified to yield amine hydrochloride. The intercalation of polyamides into montmorillonite (MMT) was achieved through an ion exchange process between sodium cations in MMT and amine hydrochloride in the polyamides. The structure of the resulting materials was characterized with elemental analysis, proton nuclear magnetic resonance, Fourier transform infrared‐spectroscopy, X‐ray diffraction, thermogravimetric analysis, and transmission electron microscope. The release behavior of 1,3,4‐oxa(thia)diazoles was investigated in buffered aqueous solution at different pH values (2.3, 5.8, and 7.4). A slow release was recorded from the nanocomposites whereas; the release reaches almost 90% from polyamides. The in vitro antimicrobial activity of the polyamides and nanocomposites was studied against Gram‐negative bacteria, Gram‐positive bacteria, Yeast and the filamentous fungi by well diffusion method. The polymers showed good or moderate antimicrobial activities. However, nanocomposites showed no antimicrobial effect. Furthermore, in vivo study showed that nanocomposites had good antimicrobial activity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41177.  相似文献   

17.
Poly(methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by different modification agents [dioctadecyl dimethyl ammonium chloride (DODAC) and methacrylatoethyltrimethyl ammonium chloride (MTC)] and different modification method (cation‐exchange reaction and grafting reaction), ultimately giving rise to five kinds of organomodified MMT (OMMT). The structure of the OMMT was studied by Wide angle X‐ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). Meanwhile, the structure of the PMMA/MMT nanocomposites microspheres was also investigated by WAXD. The molecular weight of the polymers extracted from PMMA/MMT nanocomposites was measured by gel permeation chromatograph (GPC). Finally, the mechanical properties of these PMMA/MMT nanocomposites were studied in detail. It was found that large interlayer spacing (d001) of OMMT could not entirely ensure an exfoliated structure of resultant PMMA/MMT nanocomposites, while OMMT with relative small d001 could still yield exfoliated structure as long as the compatibility between OMMT and polymer matrix was favorable. In addition, the results of mechanical investigation indicated that the compatibility between OMMT and PMMA matrix turned out to be the dominant factor deciding the final mechanical properties of PMMA/MMT nanocomposites. POLYM. COMPOS., 37:1705–1714, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Two kinds of polyvinyl chloride (PVC)/montmorillonite (MMT) nanocomposites were prepared by the melt intercalation method based on a thermally stable, rigid‐rod aromatic amine modifier and a commonly used 1‐hexadecylamine. The information on morphological structure of PVC/MMT nanocomposites was obtained using XRD and TEM. The mechanical, thermal, and flame retardant properties of the nanocomposites were characterized by universal tester, DMA, TGA, and cone calorimeter. The degree of degradation of PVC was studied by 1H‐NMR. MMT treated by the aromatic amine exhibited better dispersibility than that treated by 1‐hexadecylamine. The nanocomposites, based on this MMT, consequently exhibited better mechanical, thermal, and flame retardant properties and lower degradation degree than those based on 1‐hexadecylamine‐treated MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 567–575, 2004  相似文献   

19.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004  相似文献   

20.
Organo‐Montmorillonite (Org‐MMT)/maleic anhydride grafted polypropylene (PP‐g‐MAH)/polypropylene nanocomposites have been prepared by melt blending with twin‐screw extruder. The mechanical properties of the nanocomposites and the dispersion of Org‐MMT intercalated by the macromolecular chain were investigated by transmission electron microscopy and mechanical tests. The crystal properties of the nanocomposites have been tested by a differential scanning calorimeter. The thermal properties of the nanocomposites were investigated by thermo gravimetric analysis. The results show that not only the impact property but also the tensile property and the bending modulus of the system have been increased evidently by the added Org‐MMT. The Org‐MMT has been dispersed in the matrix in the nanometer scale. With the addition of the Org‐MMT, the melting point and the crystalling point of the nanocomposites increased; the total velocity of crystallization of the nanocomposites also increased. Thermal stability of the nanocomposites is increased by the filled Org‐MMT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2875–2880, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号