首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long chain branching (LCB) were added to linear polypropylene (PP) using reactive extrusion in the presence of selected polyfunctional monomers (PFMs) and a peroxide of dibenzoyl peroxide (BPO). Fourier Transformed Infrared spectra (FTIR) directly confirmed the grafting reaction occurred during the reactive extrusion process. Various rheological plots including viscosity curve, storage modulus, Cole‐Cole plot, and Van‐Gurp plots, confirmed that the LCB structure were introduced into modified PPs skeleton after modification. In comparison with linear PP, the branched samples exhibited higher melt strength, lower melt flow index, and the enhancement of crystallization temperature. The LCB level in modified PPs and their melt strength were affected by the type of PFM used and could be controlled by the PFM properties and structure. PFMs with lower boiling points, such as 1, 4‐butanediol diacrylate (BDDA), could not produce LCB structure in modified PP skeleton. The shorter molecular chain bifunctional monomers, such as 1,6‐hexanediol diacrylate (HDDA), favored the branching reaction if their boiling points were above the highest extrusion temperature. And some polar groups, such as hydroxyl, in the molecule of PFM were harmful to the branching reaction, which might be attributed to the harm of the polarity of groups to the dispersion of PFM in PP matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Long chain branching polypropylene (LCBPP) with different long chain branching (LCB) contents were prepared by reactive extrusion in the presence of styrene and benzoyl peroxide, and their shear‐induced crystallization behaviors were investigated. The results indicated that the LCB structure extended the relaxation time of LCBPP in the molten state, which led to the formation of β‐form polypropylene under shear and high cooling rate. The content of β‐form (Kβ) increased with the increase of LCB content, shearing rate and cooling rate. The Kβ value of LCBPP3 whose weight average molecular weight was 920,000 g mol?1 could be up to 52.0% with a shear rate of 60 s?1 associated with a cooling rate of 280°C min?1. This study is expected not only to have a deeper understanding of the shear‐induced crystallization behavior of LCBPP, but also provide a new strategy to obtain high level β‐form polypropylene. POLYM. ENG. SCI., 56:240–247, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
The crystallization behavior and isothermal crystallization kinetics of neat poly(l ‐lactic acid) (PLLA) and PLLA blended with ionic liquid (IL), 1‐butyl‐3‐methylimidazolium dibutylphosphate, were researched by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WXRD). Similar to the non‐isothermal crystallization behavior of neat PLLA, when PLLA melt was cooled from 200 to 20°C at a cooling rate of 10°C min?1, no crystallization peak was detected yet with the incorporation of IL. However, the glass transition temperature and cold crystallization temperature of PLLA gradually decreased with the increase of IL content. It can be attributed to the significant plasticizing effect of IL, which improved the chain mobility and cold crystallization ability of PLLA. Isothermal crystallization kinetics was also analyzed by DSC and described by Avrami equation. For neat PLLA and IL/PLLA blends, the Avrami exponent n was almost in the range of 2.5–3.0. It is found that t1/2 reduced largely, and the crystallization rate constant k increased exponentially with the incorporation of IL. These results show that the IL could accelerate the overall crystallization rate of PLLA due to its plasticizing effect. In addition, the dependences of crystallization rate on crystallization temperature and IL content were discussed in detail according to the results obtained by DSC and POM measurements. It was verified by WXRD that the addition of IL could not change the crystal structure of PLLA matrix. All samples isothermally crystallized at 100°C formed the α‐form crystal. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41308.  相似文献   

4.
Poly(l ‐lactic acid) (PLLA), a biopolymer that can be derived from renewable resources, is known for its brittleness as a result of slow crystallization rates under supercooling conditions, which is associated with the formation of large spherulites. In addition, the glass transition temperature (Tg) of PLLA is 60°C, such that the polymer chain is immobile at room temperature. These disadvantages make PLLA unsuitable for use in the food packaging sector. In this research, biopolymer blends based on PLLA and poly((R)‐3‐hydroxybutyrate) (PHB), together with tributyl citrate (TBC) as a plasticizer, were developed. TBC was added to increase polymer chain mobility, and to decrease PLLA Tg from 60 to 10°C in blends. Furthermore, the addition of PHB as a nucleating agent to PLLA resulted in an increased proportion of smaller spherulites. Fourier‐transform infrared (FT‐IR) spectroscopy indicated that the carbonyl group and several other characteristic peaks in blends are shifted to lower wavenumber. In addition, polarized optical microscopy experiments confirmed the results of differential scanning calorimetry, FT‐IR, and wide‐angle X‐ray diffraction, showing that PHB enhances the crystallization behavior by acting as a bionucleation. POLYM. ENG. SCI., 54:1394–1402, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Poly(3‐hydroxybutyrate) (PHB) and poly(l ‐lactic acid) (PLLA) were individually cross‐linked with dicumyl peroxide (DCP) (0.25–1 wt %) by reactive melt processing. The cross‐linked structures of the polymer gel were investigated by nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies. The size of the polymer crystal spherulites, glass transition temperature (Tg), melting transition temperature (Tm), and crystallinity were all decreased as a result of cross‐linking. Cross‐linking density (νe) was shown to increase with DCP concentration. Based on parallel plate rheological study (dynamic and steady shear), elastic and viscous modulus (G″ and G′), complex viscosity (η*) and steady shear viscosity (η) were all shown to increase with cross‐linking. Cross‐linked PHB and PLLA showed broader molar mass distribution and formation of long chain branching (LCB) as estimated by RheoMWD. Improvements in melt strength offer bioplastic processors improved material properties and processing options, such as foaming and thermoforming, for new applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41724.  相似文献   

6.
The isothermal crystallization behavior of poly(L ‐lactic acid)/organo‐montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice‐functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (ti) and half times for overall PLLA crystallization (100°C ≤ Tc ≤ 120°C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X‐ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer. The specific interaction between PLLA and TFC was characterized by the Flory‐Huggins interaction parameter (B), which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with TFC than normal OMMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Long‐chain branching polypropylene (LCB‐PP) was achieved by reactive extrusion in the presence of bifunctional monomer [1,6‐hexanediol diarylate (HDDA)] and peroxide of dicumyl peroxide (DCP). Influences of HDDA and DCP concentrations on the branching efficiency were comparatively evaluated. Fourier transformed infrared spectroscopy (FTIR) results indicated that the grafting reaction took place, and HDDA has been grafted on PP skeleton. In comparison with initial PP, some modified samples showed lower melt flow index because of a large number of LCB in their skeleton. Several rheology plots were used to investigate the rheological properties of the initial PP and modified PPs, and the rheological characteristics confirmed the LCB in modified PPs skeleton. DSC results showed that the crystallization temperatures of modified PPs were higher than those of initial PP and degraded PP, suggesting that the modified PPs had long‐chain branched structure. The contrastive investigation in the rheology of modified PPs suggested that proper concentrations of HDDA and DCP were more beneficial to producing LCB during reactive extrusion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Poly(l ‐lactic acid) (PLLA) and metal–organic framework (MOF) mixed‐matrix membranes were prepared by melt extrusion of PLLA with 5% (w/w) of either activated or water‐saturated Cu3(BTC)2 (Cu3(C9H3O6)2(H2O)3·xH2O, HKUST‐1). The morphology and the stability of injection‐molded samples were evaluated using thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The presence of activated and saturated MOF crystals increased the cold crystallization onset temperature as compared to neat PLLA. This can be attributed to the MOF crystals incorporated in the PLLA matrix, which decreased the mobility of PLLA and thus impeded the crystallization process. According to the XRD results, the activated MOF crystals were successfully incorporated into the PLLA matrix without altering the crystal structure of the MOF. Moreover, the findings from permeability and tensile tests as well as SEM imaging indicated good interfacial interactions between PLLA and activated MOF. However, during melt extrusion of PLLA with saturated MOF, water molecules from the saturated MOF altered the MOF crystal structure and contributed to the degradation of the PLLA polymer by reducing its molecular weight by around 21%. © 2013 Society of Chemical Industry  相似文献   

10.
In this work, the effect of poly(l ‐lactide) (PLLA) components on the crystallization behavior and morphology of poly(?‐caprolactone) (PCL) within PCL/PLLA blends was investigated by polarized optical microscopy, DSC, SEM and AFM. Morphological results reveal that PCL forms banded spherulites in PCL/PLLA blends because the interaction between the two polymer components facilitates twisting of the PCL lamellae. Additionally, the average band spacing of PCL spherulites monotonically decreases with increasing PLLA content. With regard to the crystallization behaviors of PCL, the crystallization ability of PCL is depressed with increase of the PLLA content. However, it is interesting to observe that the growth rate of PCL spherulites is almost independent of the PLLA content while the overall isothermal crystallization rate of PCL within PCL/PLLA blends decreases first and then increases at a given crystallization temperature, indicating that the addition of PLLA components shows a weak effect on the growth rate of the PCL but mainly on the generation of nuclei. © 2018 Society of Chemical Industry  相似文献   

11.
Poly(l ‐lactide) (PLLA) nanofibers were prepared by melt extrusion of immiscible blends of PLLA/low density polyethylene (LDPE) and subsequent removal of the LDPE matrix from the blend fibers. The effect of blends composition and draw ratio on the phase structure of the blend fibers, crystallization, mechanical properties, and the diameter of the PLLA nanofibers was investigated. It is found that the diameter of the PLLA phase gradually increases with the increase of PLLA content. With the variation of PLLA content from 50 to 60 wt %, the average diameter of acquired PLLA nanofibers changes from 119 to 153 nm under the draw ratio of 1.5. When further increasing the content of PLLA to 65%, it is difficult to acquire PLLA nanofibers due to the poor dissolving properties between PLLA and LDPE components. Oriented PLLA nanofibers with the average diameter of 92 nm can be fabricated from PLLA/LDPE (50/50, wt %) blends under the draw ratio of 2. The present results suggest that it is possible to acquire polymer nanofibers with high output using blend sea‐island melt spinning. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41228.  相似文献   

12.
In this article, we discuss the crystallization behavior and crystallization kinetics of isotactic polypropylene (iPP) modified by long‐chain‐branching (LCB) high‐melt‐strength iPP over a wide composition range, that is, LCB‐iPP from 10 to 50 wt %. Over the entire range we investigated, the presence of LCB‐iPP accelerated crystallization in both the isothermal crystallization process and nonisothermal crystallization process, even when the LCB‐iPP content was as low as 10%, and both crystallization processes were enhanced more significantly as the LCB‐iPP content increased. Hoffman–Lauritzen theory analysis revealed that the fold‐free energy decreased effectively with the occurrence of the LCB structure, although the growth rate of spherulites was depressed, as shown by polarized optical microscopy. Meanwhile, the regime III–regime II transition temperature was about 15° higher for all of the LCB‐iPP compositions than that of iPP because the LCB structure reduced the mobility of the polypropylene chains. Furthermore, the γ‐form crystal structure was favored by LCB compared to the β form, which was supported by wide‐angle X‐ray diffraction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
N,N,N′‐Tris(1H‐benzotriazole) trimesinic acid acethydrazide (BD) was synthesized from 1H‐benzotriazole acetohydrazide and trischloride to serve as an organic nucleating agent for the crystallization of poly(l ‐lactic acid) (PLLA). First, the thermogravimetric analysis of BD exhibited a high thermal decomposition temperature; this indicated that BD maybe used as a heterogeneous nucleating agent of PLLA. Then, the effect of BD on the crystallization and melting behavior of PLLA was investigated through differential scanning calorimetry, depolarized light intensity measurements, and wide‐angle X‐ray diffraction. The appearance of a nonisothermal crystallization peak and increases in the glass‐transition temperature and the intensity of the diffraction peak suggested that the presence of BD accelerated the overall PLLA crystallization. Upon cooling at a rate of 1°C/min, the addition of just 0.5 wt % BD to PLLA increased the onset crystallization temperature from 101.4 to 111.3°C, and the nonisothermal crystallization enthalpy increased from 0.1 to 38.6 J/g. The isothermal crystallization behavior showed that the crystallization half‐time of PLLA with 0.5 wt % BD (PLLA/0.5% BD) decreased from 49.9 to 1.1 min at 105°C. However, the equilibrium melting point of PLLA/0.5% BD was lower than that of the pristine PLLA; this resulted from the increasing nucleating density of PLLA. The melting behavior of PLLA/0.5% BD further confirmed that BD improved the crystallization of PLLA, and the double‐melting peaks of PLLA/0.5% BD were assigned to melting–recrystallization. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42402.  相似文献   

14.
To improve the crystallization rate and melt strength of polylactide (PLLA), nano‐size amino silica grafted by four‐arm PLLA (4A‐PLLA) with different molecular weight was synthesized. 1H nuclear magnetic resonance proved that 4A‐PLLA had been grafted onto the surface of SiO2 successfully, and the grafting ratios and the degradation behaviors of the grafted SiO2 nanoparticles (g‐SiO2) were studied. When the grafted silica was introduced into PLLA matrix, the crystallization rate and melt strength of composites were found to be improved and the length of grafted chain played an important role. The extension rheology indicated that long grafted 4A‐PLLA on the surface of SiO2 was more efficient in enhancing the elongational viscosity of PLLA, owing to the stronger interactions between the grafted chains and the matrix. The crystallization behavior of ungrafted silica filled composite was similar to that of neat PLA, while g‐SiO2 played a role of nucleating agent. The crystallinities and the crystallization rates of the composites depended on the content of g‐SiO2 and the grafted chain length of 4A‐PLLA, especially the latter. Longer grafted chain acted as nucleation site in the matrix and significantly improved the crystallization behaviors of PLLA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45675.  相似文献   

15.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

16.
Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers  相似文献   

17.
Long‐chain branching polypropylene (LCB‐PP)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder. The microstructure and melt rheology of these nanocomposites were investigated using x‐ray diffraction, transmission electron microscopy, oscillatory shear rheology, and melt elongation testing. The results show that, the clay layers are intercalated by polymer molecular chains and exfoliate well in LCB‐PP matrix in the presence of maleic anhydride grafted PP. Rheological characteristics, such as higher storage modulus at low‐frequency and solid‐like plateau in tan‐ω curve, indicate that a compact and stable filler network structure is formed when clay is loaded at 4 phr (parts per hundred parts of) or higher. The response of the nanocomposite under melt extension reveals an initial decrease in the melt strength and elongational viscosity with increasing clay concentration up to 6 phr. Later, the melt strength and elongational viscosity show slight increases with further increasing clay concentration. These results might be caused by a reduction in the molecular weight of the LCB‐PP matrix and by the intercalation of LCB‐PP molecular chains into the clay layers. Increases in the melt strength and elongational viscosity for the nanocomposites with decreasing extrusion temperature are also observed, which is due to flow‐induced crystallization under lower extrusion temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
We investigated the effects of surface‐treated organophilic clay on the crystallization of poly(L ‐lactide) (PLLA) in their hybrids. The natural nano‐clay in PLLA/clay hybrids acts as a heterogeneous nucleating agent to facilitate crystallization. On the contrary, extensive distributions of induction periods for nucleation are observed in the individual spherulites of neat PLLA and PLLA/organophilic clay hybrids. Therefore, it is suggested that nucleation type of neat PLLA and PLLA/organophilic clay hybrids implies nearly growth geometry as a homogeneous one. Further, under the presence of nano‐clay in their composites, PLLA matrix form the orthorhombic lattice structure corresponded to the α‐form crystal. Since this experimental fact implies little effect of the clay particles on polymorphism of PLLA crystal, the nucleating effect of the organophilic clay seems weaker than the natural clay itself. However, an increase in clay content enhances the growth rates of spherulite for hybrids. Consequently, most of hybrids exhibit an increase in overall crystallization rates at any crystallization temperature in spite of relatively lower nucleation rate of PLLA crystallites itself. In addition, the Avrami exponents (n) obtained by relatively low crystallization temperature ranged from 4 to 6, implying that the growth geometry was dominated sheaf‐like structure in early stage of isothermal crystallization. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time–strain separation beyond some characteristic time, τk. The presence of LCB is observed to increase the value of τk relative to the linear resin. The behavior of the relaxation modulus at times shorter than τk is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
Long chain branching (LCB) of polylactic acid (PLA) was successfully prepared by melt radicals reaction with pentaerythritol triacrylate (PETA) and bis (1‐methyl‐1‐phenylethyl) peroxide (DCP). The topological structure of the LCB was investigated by rheology and branch‐on‐branch (BOB) model was used to estimate the exact chain structures of the products, where comb‐like LCB structures were generated due to the complex coupling between different macro‐radicals. LCB structure was found to affect the crystallization of PLA products. In the temperature range of 110–130°C, the crystallization rate parameter (k) was improved sharply and the half crystallization time was decreased significantly after the grafting of PETA, which was ascribed to the enhanced hydrogen bonding in PETA‐grafted long chain branching PLA. By comparing with the LCB PLA made from chain extension using multifunctional monomer, it shows that the crystallization becomes slower in a highly branched material with extremely long relaxation time if the effect of hydrogen bonding is similar. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号