首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyterminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐PU, was synthesized by two‐step polymerization and was firstly used as membrane materials to recover aroma, ethyl acetate (EA), from aqueous solution by pervaporation (PV). The effects of the number–average molecular weight (Mn) of HTPB, EA in feed, operating temperature, and membrane thickness on the PV performance of HTPB‐PU membranes were investigated. The membranes demonstrated high EA permselectivity as well as high EA flux. The DSC result showed two transition temperatures in the HTPB‐PU membrane and contact angle measurements revealed the difference of hydrophobicity of the membrane at both sides, which were induced by glass plate and air, respectively, due to movement of the soft hydrophobic polybutadiene (PB) segments in HTPB‐PU chains. Furthermore, the PV performance of the HTPB‐PU membrane with the hydrophobic surface facing the feed was much better than that with the hydrophilic surface. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 552–559, 2007  相似文献   

2.
《分离科学与技术》2012,47(11):1699-1708
Hydroxy terminated polybutadiene (HTPB)-based polyurethaneurea membranes with and without cross-linkage were synthesized and first used as membrane material to separate p-/o-xylene mixtures by pervaporation. Compared with HTPB-PU (without cross-linkage) membranes, HTPB-DVB-PU (cross-linked HTPB-PU with divinyl benzene) membranes demonstrated a lower degree of swelling in xylene isomer solutions and noticeable improved separation factor of p-/o-xylene. On the other hand, the amount of p-xylene adsorbed in HTPB-DVB-PU membranes increased significantly rather than that of o-xylene. While the separation factor of p-/o-xylene increased but the total flux decreased with increasing DVB content, which can be ascribed to the improved chemical structure and more homogeneous chain structures of the HTPB-DVB-PU membranes. The p-xylene normalized permeation rate and separation factor of p-/o-xylene of HTPB-DVB-PU membrane reached 2.70 kgµm/m2h and 2.23, respectively, at a feed concentration of 10 wt% p-xylene at 30°C.  相似文献   

3.
Pervaporation (PV) performances of silicalite‐filled polyether‐block‐amide (PEBA) membranes for separation of ethanol/water mixtures have been studied. The effects of silicalite content, ethanol concentration in feed, and feed temperature on the PV performances of the membranes have been investigated. It is found that addition of silicalite can improve PV performances of PEBA membranes. When the silicalite content is 2.0 wt %, both permeation flux and separation factor reach the maximum values, which are 833 g/m2h and 3.6, respectively. With increasing of ethanol in the feed and feed temperature, both separation factor and total flux increased. The higher permeation activation energy of ethanol (Eethanol = 21.62 kJ/mol) compared to that of water (Ewater = 18.33 kJ/mol) for the 2.0 wt% silicalite‐filled PEBA membrane accounts for the increase of the separation factor with feed temperature.  相似文献   

4.
Hydroxyl‐terminated polybutadiene (HTPB), 4,4′‐dicyclohexyl methane diiscyanate (H12MDI), and 1,4‐butane diol are used to synthesize polyurethane (PU) solutions by two‐stage process. Interpenetrating networks (IPNs) of HTPB‐based PU and poly(methyl methacrylate) (PMMA) with HTPB/MMA (wt/wt % ratio) = 2.0, 1.5, 1.0, 1.5, 0.8, and 0.6, which are designated as IPN1 to IPN5, respectively, are synthesized by sequential polymerization technique. Thermal properties, tensile strength, and contact angle of membranes increase with the increase of MMA content, while the elongation of membranes show the reverse trend. Characterization of membranes are investigated by C?C/C?O absorption ratio and infrared absorption frequency shiftment. These PU and IPN membranes are used for the separation of ethanol/water and isopropanol/water solution by pervaporation test. IPN3 membrane possesses the largest pervaporation permeability and the separation factor. The pervaporation results of ethanol/water feed has the same trend as that of isopropyl alcohol (IPA)/water solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
CuO‐filled aminomethylated polysulfone hybrid membranes were prepared for sulfur removal from gasoline. The as‐prepared membranes were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The separation performance of the hybrid membranes was evaluated by pervaporation (PV) separation of n‐heptane/thiophene binary mixture. CuO‐filling leads to a decrease in permeation flux. The sulfur‐enrichment factor increased first and then decreased with increasing CuO loading, and it is worth noting that there is a rebound in enrichment factor above 8 wt % CuO loading. Influencing factors such as nitrogen content, feed temperature, sulfur content, and various hydrocarbons on membrane PV performance were also evaluated. Permeation flux of 23.9 kg·μm·m?2·h?1 and sulfur‐enrichment factor of 3.9 can be achieved at 4 wt % CuO loading in PV of n‐heptane/thiophene binary mixture with 1500 μg·g?1 sulfur content. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3718–3725, 2013  相似文献   

7.
BACKGROUND: The design of experiments (DoE) is applied to the process optimization of p‐xylene (pX) separation from its isomers m‐xylene (mX) and o‐xylene (oX) mixture using silicalite‐1 membrane supported on α‐alumina. A central composite design (CCD) coupled with response surface methodology (RSM) was used to correlate the effect of two separation process variables, temperature (150–250 °C) and pX feed partial pressure (0.10–0.26 kPa) to three responses: (i) pX flux; (ii) pX/oX separation factor; and (iii) pX/mX separation factor. The significant factors affecting each response were elucidated from the analysis of variance (ANOVA). The interaction between two variables was investigated systematically based on three‐dimensional response surface plots. RESULTS: The optimization criteria were used to maximize the value of pX flux, pX/mX separation factor and pX/oX separation factor. The optimum pX flux of 5.94 × 10?6 mol m?2 s?1, pX/oX separation factor of 19 and pX/mX separation factor of 20 were obtained at a temperature of 198 °C and pX feed partial pressure of 0.22 kPa. CONCLUSIONS: The experimental results were in good agreement with the simulated values obtained from the proposed models, with an average error of ± 2.90%. In comparison with the conventional approach, DoE provides better flexibility of the process studies and a useful guideline for the membrane process operation for pX separation. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
The permeation behavior of water/tert‐butanol mixture through Sulzer Pervap2510 hydrophilic poly(vinyl alcohol) membranes was investigated and the effects of feed composition and temperature on separation efficiency of the membranes were studied. The pervaporation experiments were carried out with feed water content varying from 0 to 20 wt % according to the existing industrial needs and with the feed temperature from 60 to 100°C. Over this range, both water flux and separation factor increased with increasing water content and feed temperature. These phenomena may be attributed to (1) the strong interaction between water and the membrane, (2) the decoupling effect of the permeants and the membrane at elevated temperatures, and (3) the steric hindrance effect of branch chain alcohol. The permeability ratio (the ideal separation factor) of water to tert‐butanol across the membrane was calculated and found to follow the same relationship with increasing temperature and water content. Both flux and separation factor obtained from the Pervap2510 membrane in this study were much higher than previous reported values, possible causes for which were analyzed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4082–4090, 2004  相似文献   

9.
BACKGROUND: To use butanol as a liquid fuel and feedstock, it is necessary to establish processes for refining low‐concentration butanol solutions. Pervaporation (PV) employing hydrophobic silicalite membranes for selective recovery of butanol is a promising approach. In this study, the adsorption behavior of components present in clostridia fermentation broths on membrane material (silicalite powder) was investigated. The potential of PV using silicone rubber‐coated silicalite membranes for the selective separation of butanol from model acetone–butanol–ethanol (ABE) solutions was investigated. RESULTS: The equilibrium adsorbed amounts of ABE per gram of silicalite from aqueous solutions of binary mixtures at 30 °C increased as follows: ethanol (95 mg) < acetone (100 mg) < n‐butanol (120 mg). The amount of butanol adsorbed is decreased by the adsorption of acetone and butyric acid. In the separation of ternary butanol/water/acetone mixtures, the enrichment factor for acetone decreased, compared with that in binary acetone/water mixtures. In the separation of a model acetone–butanol–ethanol (ABE) fermentation broth containing butyric acid by PV using a silicone rubber‐coated silicalite membrane, the permeate butanol concentration was comparable with that obtained in the separation of a model ABE broth without butyric acid. The total flux decreased with decreasing feed solution pH. CONCLUSION: A silicone rubber‐coated silicalite membrane exhibited highly selective PV performance in the separation of a model ABE solution. It is very important to demonstrate the effectiveness of PV in the separation of actual clostridia fermentation broths, and to identify the factors affecting PV performance. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
王静  黄燕冰  叶宏  冯旭东  梁海燕 《广州化工》2011,39(18):59-61,138
研究通过两步反应法制备端羟基聚丁二烯基聚氨酯(HTPB-PU)渗透汽化膜,采用红外、热分析、扫描电镜等手段对其结构与性能进行了表征,研究了该膜从水中分离苯酚的渗透汽化性能。结果发现,该膜表现出良好的优先透过苯酚的分离性能。以0.5%苯酚水溶液作为料液,随着操作温度从60℃增加到80℃,渗透通量增加而分离因子下降,在60℃时,分离因子与渗透通量可分别达到23.80与2.85 kg.μm.m-2.h-1。  相似文献   

11.
Hydroxyl‐terminated polybutadiene (HTPB) was blended into a poly(ether sulfone) (PES) casting solution used to prepare ultra‐filtration (UF) membranes via the phase inversion technique. The membranes were then characterized by contact angle (CA) measurements and UF experiments. The CA was increased with the addition of HTPB in the PES membrane and also by lowering the gelation bath temperature. It was observed that the CA was lower for membranes prepared with N‐methyl‐2‐pyrrolidinone (NMP) as the solvent than those using N,N‐dimethylacetamide (DMAc) as solvent. The flux values were higher for membranes made using a 4°C gelation bath when compared with the ambient temperature ((25 ± 1)°C) irrespective of the cast solvents, NMP or DMAc. The flux values were much higher and the solute separations were lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast with DMAc as a solvent. On the other hand, both flux and separation values were much lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast using NMP. Atomic force microscopy and scanning electron microscopy were used for morphological characterization and the correlation of topography/photography with the performance data was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2292–2303, 2006  相似文献   

12.
The present study reports the pervaporative separation capability of the pristine and polyhedral oligomeric silsesquioxanes (POSS) loaded hybrid polyether‐block ‐amide (PEBA) membranes for n ‐butanol recovery from the dilute n ‐butanol–water mixtures. It is the first study to produce POSS‐loaded PEBA membranes for n ‐butanol recovery. The morphology and crosslinking structure of the pristine and hybrid membrane were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The thermal stability and crystallization behaviors of the pristine and hybrid membranes were investigated using thermogravimetric analysis and differential scanning calorimetry methods. Swelling experiments were also done to determine the affinity of the membranes to the n ‐butanol–water mixture. The effect of increasing amount of POSS on pervaporation performance was investigated in terms of flux and the n ‐butanol separation factor at 40 °C and a given n ‐butanol. All the hybrid membranes exhibited high flux and n ‐butanol separation factor than that of the pristine PEBA membrane. The best n ‐butanol separation factor of 27.2 was obtained accompanied with 1.33 Kg m?2 h?1 of flux, when the POSS amount was 4 wt %. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45211.  相似文献   

13.
A series of polyurethane (PU) films made from toluene diisocyanate (TDI), 1,4‐butanediol (BDO), and hydroxyl‐terminated polybutadiene (HTPB), hydroxyl terminated polybutadiene/styrene (HTBS), or hydroxyl terminated polybutadiene/acrylonitrile (HTBN) was synthesized by solution polymerization. The absorption of benzene vapor was found mainly in the soft phase. The equilibrium adsorption (M) was reduced with increasing hard segment content for all the PUs. The values of M were in the sequence of HTBN‐PUs > HTBS‐PUs > HTPB‐PUs, which could be explained by the different interaction parameters between soft segments and benzene. The HTBN‐PU film showed the lowest degree of phase segregation and had more hard segments intermixed in the soft phase, restricting the movement of soft segments, and therefore resulted to non‐Fickian behavior, while the HTPB‐PU is antithetical. FTIR and atomic force microscopy were utilized to identify the hydrogen bonding behavior and morphology change of the PU films before and after the absorption of benzene vapor. The tensile strength of the HTBN‐PUs showed a greater decrease than that of HTBS‐PUs and HTPB‐PUs after absorbing benzene vapor. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2984–2991, 2004  相似文献   

14.
We made poly(ether‐block‐amide) membranes by casting a solution on a nonsolvent surface. The effects of the solvent ratio (n‐butanol/isopropyl alcohol), temperature, and polymer concentration on the quality of the membranes were studied. The results show that the film quality was enhanced with increasing isopropyl alcohol ratio in the solvent. This behavior was related to the reduction of the solution surface tension and the interfacial tension between the solution and nonsolvent. Uniform films were made at a temperature range of 70–80°C and a polymer concentration of 4–7 wt %. The morphology of the membranes was investigated with scanning electron microscopy. The qualities of the films improved with increasing isopropyl alcohol ratio in the solvent. With these membranes, the pervaporation of ethyl butyrate (ETB)/water and isopropyl alcohol/water mixtures was studied, and high separation performance was achieved. For ETB/water mixtures, with increasing ETB content, both the permeation flux and separation factor increased. However, for isopropyl alcohol/water mixtures, with increasing isopropyl alcohol content, the permeation flux increased, but the separation factor was diminished. Increasing temperature in a limited range resulted in a decreasing separation factor and an increasing permeation flux. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The pervaporation (PV) separation and swelling behavior of water–acetic acid mixtures were investigated at 30, 40, and 50°C using pure sodium alginate and its zeolite‐incorporated membranes. The effects of zeolite loading and feed composition on the pervaporation performance of the membranes were analyzed. Both the permeation flux and selectivity increased simultaneously with increasing zeolite content in the polymer matrix. This was discussed on the basis of a significant enhancement of hydrophilicity, selective adsorption, and molecular sieving action, including a reduction of pore size of the membrane matrix. The membrane containing 30 mass % of zeolite showed the highest separation selectivity of 42.29 with a flux of 3.80 × 10?2 kg m?2 h?1 at 30°C for 5 mass % of water in the feed. From the temperature dependency of diffusion and permeation data, the Arrhenius activation parameters were estimated. The Ep and ED values ranged between 72.28 and 78.16, and 70.95 and 77.38 kJ/mol, respectively. The almost equal magnitude obtained in Ep and ED values signified that both permeation and diffusion contribute equally to the PV process. All the membranes exhibited positive ΔHs values, suggesting that the heat of sorption is dominated by Henry's mode of sorption. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2101–2109, 2004  相似文献   

16.
The waste perfluoro‐ion‐exchange membranes (PFIEMs) in chlor‐alkali industry were regenerated and used to the separation of dimethyl carbonate (DMC)/methanol (MeOH) mixtures by pervaporation process. The energy‐dispersive spectrum (EDS) demonstrates that the impurities on the surfaces of waste PFIEMs can be effectively cleared by the regeneration process. The degree of swelling, sorption, and pervaporation properties of the regenerated PFIEMs with different counter ions were investigated. The results indicate that the counter ions of PFIEMs conspicuously influence the degree of swelling, sorption, and pervaporation properties for DMC/MeOH mixtures. The degree of swelling and solubility selectivity both decreases with the alkali metal counter ions in the sequence: Li+ > Na+ > K+ > Cs+. The degree of swelling increases with MeOH concentration increasing in feed liquid. The pervaporation measurements illustrate that the permeation flux decreases and the separation factor increases with the rising in ion radius of counter ions. The increase of feed concentration (MeOH) and feed temperature is advantageous to improve permeation flux while at the cost of separation factor decreasing. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Boron‐substituted MFI (B‐ZSM‐5) zeolite membranes with high pervaporation (PV) performance were prepared onto seeded inexpensive macroporous α‐Al2O3 supports from dilute solution and explored for the separation of ethanol/water mixtures by PV. The effects of several parameters on microstructures and PV performance of the B‐ZSM‐5 membranes were examined systematically, including the seed size, synthesis temperature, crystallization time, B/Si ratio, H2O/SiO2 ratio and silica source. A continuous and compact B‐ZSM‐5 membrane was fabricated from solution containing 1 tetraethyl orthosilicate/0.2 tetrapropylammonium hydroxide/0.06 boric acid/600 H2O at 448 K for 24 h, showing a separation factor of 55 and a flux of 2.6 kg/m2 h along with high reproducibility for a 5 wt % ethanol/water mixture at 333 K. It was demonstrated that the incorporation of boron into mobile five (MFI) structure could increase the hydrophobicity of B‐ZSM‐5 membrane evidenced by the improved contact angle and amount of the adsorbed ethanol, and thus enhance the PV property for ethanol/water mixtures. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2447–2458, 2016  相似文献   

18.
Polyacrylonitrile (PAN)‐based copolymers containing phosphonic acid moiety were synthesized for dehydration of aqueous pyridine solution. The in situ complex, formed between the vinylphosphonic acid (VP) moiety in the membrane and the pyridine in the feed, enhanced separation capacity of poly(acrylonitrile‐co‐vinylphosphonic acid) (PANVP) membranes. All the PAN‐based membranes containing phosphonic acid were very selective toward water. The pervaporation performances of PANVP membranes depended on the content of the phosphonic acid moiety in the membrane and operating temperature. The pervaporation separation of water/pyridine mixtures using PANVP membranes exhibited over 99.8% water concentration in permeate and flux of 4–120 g/m2/h depending on the content of vinylphosphonic acid and operating temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 83–89, 1999  相似文献   

19.
The novel modified polyurethane (PU) membranes were prepared by β-cyclodextrin (CD) cross-linking and SiO2/carbon fiber filler, simultaneously. The structures, thermal stabilities, morphologies, and surface properties were characterized by FTIR, TGA, SEM, and contact angle. The results showed that the addition of inorganic particles increased the thermal stabilities of PU membranes. The modified PU membranes possessed more hydrophobic surfaces than pure PU. In the swelling investigation, PU and its modified membranes were swelled gradually with increasing phenol content in the mixture. The membranes modified by CD cross-linking (PUCD) demonstrated the highest swelling degree. Pervaporation (PV) performances were investigated in the separation of phenol from water. Three kinds of modified membranes obtained better permeability and selectivity than PU membranes. With the feed mixture of 0.5 wt% phenol at 60 °C, the modified PU membrane by CD cross-linking and SiO2 filler (PUCD-S) obtained the total flux of 5.92 kg μm m?2 h?1 which was above doubled that of PU (2.90 kg μm m?2 h?1). The modified PU membrane by CD cross-linking and carbon fiber filling (PUCD-C) obtained the separation factor of 51.31 which was nearly tripled that of PU (17.72). The PUCD membranes showed both better permeability and selectivity than the pure PU membranes. The increased phenol content induced an increased separation factor of PUCD and PU, but a decreased selectivity of PUCD-S and PUCD-C. The methods of CD cross-linking and inorganic particle filling were effective to develop the overall separation performances, greatly.  相似文献   

20.
A series of pervaporation hybrid membranes were prepared from polyethylene glycol (PEG) and phenylaminomethyl trimethoxysilane (PAMTMS) based on the sol‐gel process, in which PEG was used as an organic moiety to improve the affinity for organic alcohols and silicone of PAMTMS was used as inorganic moiety to increase the permeation flux of organic species. Their application to separate isopropanol/benzene mixtures was investigated. FTIR spectra confirmed the reaction products. DSC measurement revealed that the influence of PEG content on the Tg and thermal behavior of membranes A, B, and C. FE‐SEM images exhibited that phase‐separated structure has occurred when the PEG content elevated to some extent. Pervaporation experiments showed that the permeation flux increased and the separation factor decreased with an increase in isopropanol (IPA) content in feed at 30°C. Meanwhile, the separation factor increased with an increase in feed temperature at 60 vol % IPA content. Moreover, it was found that the permeation flux was independent of the feed temperature, suggesting that feed temperature has little impact on the thermal motion of polymer chains. The increasing cross‐linking degree in hybrid matrix might be responsible for such trend. Based on these findings, it can be concluded that these pervaporation hybrid membranes have potential applications in the separation of isopropanol/benzene binary mixtures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号