首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli‐responsive targeted drug delivery systems. In the present work, a robust and simple one‐pot route is developed to synthesize polymer‐gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug‐loaded nanocontainers with disulfide cross‐linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol‐containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.  相似文献   

3.
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics.  相似文献   

4.
Achieving cellular internalization and endosomal escape remains a major challenge for many antitumor therapeutics, especially macromolecular drugs. Viral drug carriers are reported for efficient intracellular delivery, but with limited choices of payloads. In this study, a novel polymeric nanoparticle (ADMAP) is developed, resembling the structure and functional features of a virus. ADMAP is synthesized by grafting endosomolytic poly(lauryl methacrylate‐co‐methacrylic acid) on acetalated dextran. The endosomolytic polymer mimics the capsid protein for endosomal escape, and acetalated dextran resembles the viral core for accommodating payloads. After polymer synthesis, the subsequent controlled nanoprecipitation on a microfluidic device yields uniform nanoparticles with high encapsulation efficiency. At late endosomal pH (5.0), the ADMAP particles successfully destabilize endosomal membranes and release the drug payloads synergistically, resulting in a greater therapeutic efficacy compared with that of free anticancer drugs. Further conjugation of a tumor‐penetrating peptide enhances the antitumor efficacy toward 3D spheroids and finally leads to spheroid disintegration. The unique structure along with the synergistic endosomal escape and drug release make ADMAP nanoparticles favorable for intracellular delivery of antitumor therapeutics.  相似文献   

5.
A polymeric nanoparticle comprised of surface furan groups is used to bind, by Diels–Alder (DA) coupling chemistry, both targeting anti‐human epidermal growth factor receptor 2 (anti‐HER2) antibodies and chemotherapeutic doxorubicin (DOX) for targeted, intracellular delivery of DOX. In this new approach for delivery, where both chemotherapeutic and targeting ligand are attached, for the first time, to the surface of the delivery vehicle, the nuclear localization of DOX in HER2‐overexpressing breast cancer SKBR‐3 cells is demonstrated, as determined by confocal laser scanning microscopy. Flow cytometric analysis shows that the conjugated DOX maintains its biological function and induces similar apoptotic progression in SKBR‐3 cells as free DOX. The viable cell counts of SKBR‐3 cancer cells following incubation with different nanoparticle formulations demonstrates that the combined DOX and anti‐HER2 nanoparticle is more efficacious than the nanoparticle formulation with either DOX or anti‐HER2 alone. While free DOX shows similar cytotoxicity against both cancerous SKBR‐3 cells and healthy HMEC‐1 cells, the combined DOX‐anti‐HER2 nanoparticle is significantly more cytotoxic against SKBR‐3 cells than HMEC‐1 cells, suggesting the benefit of nanoparticle‐conjugated DOX for cell type‐specific targeting. The DOX‐conjugated immuno‐nanoparticle represents an entirely new method for localized co‐delivery of chemotherapeutics and antibodies.  相似文献   

6.
We synthesized mesoporous silica nanoparticles (MSN) with different densities of surface positive charges. The positive surface charge was generated by incorporating trimethylammonium (TA) functional groups into the framework of MSN (MSN–TA) via direct co‐condensation of a TA‐silane and tetraethoxysilane (TEOS) in the presence of a base as a catalyst. These MSN–TA samples have well‐defined hexagonal structures with an average particle diameter of 100 nm, pore size of 2.7 nm, and surface area of about 1000 m2 g?1. Anionic drug molecules, Orange II (a fluorescent tracing molecule), and sulfasalazine (an anti‐inflammatory prodrug used for bowel disease), were effectively loaded into these MSN–TA samples and remained inside of the MSN–TA under acidic environment (pH 2–5). The amounts of loading of both Orange II and sulfasalazine were increased with increasing positive charge densities resulting from the increasing number of TA groups. When these drug‐loaded MSN–TA nanoparticles were placed in physiological buffer solution (pH 7.4), a partial negative surface charge on the MSN–TA was generated due to the deprotonation of silanol groups, and the strong electrostatic repulsion triggered a sustained release of the loaded molecules. MSN–TA as a nanovehicle for pH‐dependent loading and controllable release of anionic drug molecules can be used as an oral delivery drug systems targeting at intestine. These drugs can be remained trapped in the nanovehicle when passing through the stomach's acidic environment and be released in intestine where the environmental pH is close to neutral.  相似文献   

7.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

8.
In recent years, nanomedicine has emerged at the forefront of nanotechnology, generating great expectations in the biomedical field. Researchers are developing novel nanoparticles for both diagnostic applications using imaging technology and treatment purposes through drug delivery technologies. Among all the available nanoparticles, inorganic mesoporous silica nanoparticles are the newcomers to the field, contributing with their unique and superlative properties. A brief overview of the most recent progress in the synthesis of mesoporous silica nanoparticles and their use as drug delivery nanocarriers is provided. The latest trends in this type of nanoparticles and their use in modern medicine are discussed, highlighting the significant impact that this technology might have in the near future.  相似文献   

9.
Despite their potential in various fields of bioapplications, such as drug/cell delivery, tissue engineering, and regenerative medicine, hydrogels have often suffered from their weak mechanical properties, which are attributed to their single network of polymers. Here, supertough composite hydrogels are proposed consisting of alginate/polyacrylamide double‐network hydrogels embedded with mesoporous silica particles (SBA‐15). The supertoughness is derived from efficient energy dissipation through the multiple bondings, such as ionic crosslinking of alginate, covalent crosslinking of polyacrylamide, and van der Waals interactions and hydrogen bondings between SBA‐15 and the polymers. The superior mechanical properties of these hybrid hydrogels make it possible to maintain the hydrogel structure for a long period of time in a physiological solution. Based on their high mechanical stability, these hybrid hydrogels are demonstrated to exhibit on‐demand drug release, which is controlled by an external mechanical stimulation (both in vitro and in vivo). Moreover, different types of drugs can be separately loaded into the hydrogel network and mesopores of SBA‐15 and can be released with different speeds, suggesting that these hydrogels can also be used for multiple drug release.  相似文献   

10.
Despite the rapid development of drug delivery vehicles that react to a specific biological environment, the complexity of triggering drug release in a particular target area remains an enduring challenge. Here, the engineering of bioresponsive polymer‐mesoporous silica nanoparticles (MSNs) with function akin to an AND logic gate is described. Polycaprolactone (esterase degradable) is immobilized into the core of MSNs while polyacrylic acid (PAA), which is pH responsive, covered the outside of the MSNs to create a PAA‐PCL‐MSNs construct. Fluorescence spectroscopy indicates that the construct releases the payload (doxorubicin, cancer drugs) in the presence of, and only in the presence of, both low pH AND esterase. Confocal microscopy and fluorescence lifetime microscopy (FLIM) demonstrate uptake of the intact construct and subsequent intracellular doxorubicin (DOX) delivery into the nucleus. Further in vitro IC50 studies demonstrate the AND logic gate delivery system results in more than an eightfold efficacy against neuroblastoma (SK‐N‐BE(2)) cells in comparison with normal fibroblasts (MRC‐5). These results demonstrate the utility of MSN‐polymer construct to create an AND gate capable of selectively delivering a drug payload.  相似文献   

11.
Some theranostic nanoparticle (NP) drug delivery systems are capable of measuring drug release rates in situ. This can provide quantitative information regarding drug biodistribution, and drug dose that is delivered to cells or tissues. Here, X‐ray excited optical luminescent (XEOL) NPs coated with poly(glycolide)‐poly(ethylene glycol) (XGP) are used measure the amount of drug released into cells. The photoactive drug protoporphyrin IX (PpIX) is loaded into XGP and is able to attenuate the XEOL NP emission. Measuring an increase in XEOL intensity as PpIX is released enables the measurement of drug release into glioblastoma cells (GBM). Biodistribution studies in a BALB/c mouse GBM intracranial xenograft model show significant XGP accumulation at the site of the GBM xenograft within the brain, and not in adjacent healthy brain tissues. There is no uptake of XGP in the heart or kidneys, the primary organs associated with drug and gadolinium ion toxicity. NP toxicity is tested with U‐138MG GBM in vitro, and NPs show low cytotoxicity at concentrations of 100 μg/mL. In vivo dose escalation studies in BALB/c mice show no adverse effects at doses up to 75 mg/kg. These theranostic NPs offer an approach to quantitatively measure drug release into cells.  相似文献   

12.
13.
Engineering multifunctional nanocarriers for targeted drug delivery shows promising potentials to revolutionize the cancer chemotherapy. Simple methods to optimize physicochemical characteristics and surface composition of the drug nanocarriers need to be developed in order to tackle major challenges for smooth translation of suitable nanocarriers to clinical applications. Here, rational development and utilization of multifunctional mesoporous silica nanoparticles (MSNPs) for targeting MDA‐MB‐231 xenograft model breast cancer in vivo are reported. Uniform and redispersible poly(ethylene glycol)‐incorporated MSNPs with three different sizes (48, 72, 100 nm) are synthesized. They are then functionalized with amino‐β‐cyclodextrin bridged by cleavable disulfide bonds, where amino‐β‐cyclodextrin blocks drugs inside the mesopores. The incorporation of active folate targeting ligand onto 48 nm of multifunctional MSNPs (PEG‐MSNPs48‐CD‐PEG‐FA) leads to improved and selective uptake of the nanoparticles into tumor. Targeted drug delivery capability of PEG‐MSNPs48‐CD‐PEG‐FA is demonstrated by significant inhibition of the tumor growth in mice treated with doxorubicin‐loaded nanoparticles, where doxorubicin is released triggered by intracellular acidic pH and glutathione. Doxorubicin‐loaded PEG‐MSNPs48‐CD‐PEG‐FA exhibits better in vivo therapeutic efficacy as compared with free doxorubicin and non‐targeted nanoparticles. Current study presents successful utilization of multifunctional MSNP‐based drug nanocarriers for targeted cancer therapy in vivo.  相似文献   

14.
Surface deposition is a critical step in the application of fragrance‐containing products. This contribution presents a novel strategy to enhance the deposition of polymer‐based fragrance delivery systems onto cotton substrates from the application medium using phage display identified peptides. Following the identification of cotton binding peptide ligands under fabric softening conditions via phage display, the strongest binding peptide ligand is incorporated into two model polymer‐based fragrance delivery systems, viz., polymer profragrances and polymer nanoparticles. The model polymer profragrance used is a linear, water soluble poly(N‐(2‐hydroxypropyl)methacrylamide) conjugate, while poly(styrene‐co‐acrylic acid) (PS‐co‐PAA) nanoparticles prepared via miniemulsion polymerization are chosen as the second model system. The incorporation of the cotton binding peptide ligand into these fragrance delivery systems enhances their surface deposition two‐ to three‐fold, as evidenced by fluorescence intensity measurements. In the case of the fragrance‐containing PS‐co‐PAA nanoparticles, the enhanced surface deposition also translates into an increased fragrance release from the cotton surface according to dynamic headspace sampling measurements.  相似文献   

15.
16.
17.
An urgent need for developing new antimicrobial approaches has emerged due to the imminent threat of antimicrobial‐resistant (AMR) pathogens. Bacterial infection can induce a unique microenvironment with low pH, which can be employed to trigger drug release and activation. Here, a pH‐responsive polymer–drug conjugate (PDC) capable of combating severe infectious diseases and overcoming AMR is reported. The PDC is made of a unique biodegradable and biocompatible cationic polymer Hex‐Cys‐DET and streptomycin, a model antibiotic. The two components show strong antimicrobial synergy since the polymer can induce pores on the bacterial wall/membrane, thus significantly enhancing the transport of antibiotics into the bacteria and bypassing the efflux pump. The PDC is neutralized for enhanced biocompatibility under physiological conditions but becomes positively charged while releasing the antibiotic in infected tissues due to the low pH. Additionally, the polymer contains disulfide bonds in its main chain, which makes it biodegradable in mammalian cells and thus reducing the cytotoxicity. The PDC can effectively penetrate bacterial biofilms and be taken up by mammalian cells, thereby minimizing biofilm‐induced AMR and intracellular infections. The PDC exhibits remarkable antimicrobial activity in three in vivo infection models, demonstrating its broad‐spectrum antimicrobial capability and great potency in eliminating AMR infections.  相似文献   

18.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

19.
A programmed drug‐delivery system that can transport different anticancer therapeutics to their distinct targets holds vast promise for cancer treatment. Herein, a core–shell‐based “nanodepot” consisting of a liposomal core and a crosslinked‐gel shell (designated Gelipo) is developed for the sequential and site‐specific delivery (SSSD) of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) and doxorubicin (Dox). As a small‐molecule drug intercalating the nuclear DNA, Dox is loaded in the aqueous core of the liposome, while TRAIL, acting on the death receptor (DR) on the plasma membrane, is encapsulated in the outer shell made of crosslinked hyaluronic acid (HA). The degradation of the HA shell by HAase that is concentrated in the tumor environment results in the rapid extracellular release of TRAIL and subsequent internalization of the liposomes. The parallel activity of TRAIL and Dox show synergistic anticancer efficacy. The half‐maximal inhibitory concentration (IC50) of TRAIL and Dox co‐loaded Gelipo (TRAIL/Dox‐Gelipo) toward human breast cancer (MDA‐MB‐231) cells is 83 ng mL–1 (Dox concentration), which presents a 5.9‐fold increase in the cytotoxicity compared to 569 ng mL–1 of Dox‐loaded Gelipo (Dox‐Gelipo). Moreover, with the programmed choreography, Gelipo significantly improves the inhibition of the tumor growth in the MDA‐MB‐231 xenograft tumor animal model.  相似文献   

20.
For mitochondria‐targeting delivery, a coupling reaction between poly(ε‐caprolactone) diol (PCL diol) and 4‐carboxybutyltriphenylphosphonium (4‐carboxybutyl TPP) results in the synthesis of amphiphilic TPP‐PCL‐TPP (TPCL) polymers with a bola‐like structure. In aqueous environments, the TPCL polymer self‐assembled via cosolvent dispersion and film hydration, resulting in the formation of cationic nanoparticles (NPs) less than 50 nm in size with zeta‐potentials of approximately 40 mV. Interestingly, different preparation methods for TPCL NPs result in various morphologies such as nanovesicles, nanofibers, and nanosheets. In vitro cytotoxicity results with TPCL NPs indicate IC50 values of approximately 10–60 μg mL?1, suggesting their potential as anticancer nanodrugs. TPCL NPs can be loaded both with hydrophobic doxorubicin (Dox) and its hydrophilic salt form (Dox·HCl), and their drug loading contents are approximately 2–10 wt% depending on the loading method and the hydrophilicity/hydrophobicity of the drugs. Although Dox·HCl exhibits more cellular and nuclear uptake, resulting in greater antitumor effects than Dox, most drug‐loaded TPCL NPs exhibit higher mitochondrial uptake and approximately 2–7‐fold higher mitochondria‐to‐nucleus preference than free drugs, resulting in superior (approximately 7.5–18‐fold) tumor‐killing activity for most drug‐loaded TPCL NPs compared with free drugs. In conclusion, TPCL‐based nanoparticles have potential both as antitumor nanodrugs themselves and as nanocarriers for chemical therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号