首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of dyes from the industrial discharge water is an important issue for safety of the environment. In this study, magnetic (magnetite, Fe3O4) nanoparticles were coated with chitosan (CS) and the efficiency of these chitosan coated magnetic nanoparticles (Fe3O4‐CS) for the adsorption of a reactive textile dye (Reactive Yellow 145, RY145) was examined first time in literature. TEM, XRD, and EPR results revealed that the thickness of the coat was about 2–5 nm, no phase change in the spinel structure of magnetic particles existed after coating, and particles had paramagnetic property, respectively. Adsorption of RY145 on Fe3O4‐CS nanoparticles occurs according to Langmuir model in the temperature range 25°C–45°C with a maximum adsorption capacity of 47.62 mg g?1 at 25°C, in aqueous media. Thermodynamic parameters demonstrated that the adsorption process was endothermic and spontaneous, and the maximum desorption of the dye was 80% over a single adsorption/desorption cycle. In this study, the high efficiency of the CS coated magnetic nanoparticles in the adsorption and removal of reactive dyes from water was shown on model RY145. This type of nanoparticles can be good candidates in industrial applications for the decolorization of waste waters. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

3.
Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.  相似文献   

4.
Forward osmosis (FO) is a natural osmosis process that has attracted a significant attention due to its many advantages. However, the development of FO process depends on the development of proper draw solutions. In this work, chitosan (CS)-coated Fe3O4 nanoparticles and dehydroascorbic acid (DHAA)-coated Fe3O4 nanoparticles were successfully synthesized by co-precipitation method and their performance as draw solutes was investigated for application in FO systems. CS and DHAA could improve the surface hydrophilicity of the Fe3O4 nanoparticles. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) which the results presented a small size, crystalline morphology and high magnetization value for their structure as well as a good dispersion in water. Cellulose triacetate/cellulose acetate (CTA/CA)-based membranes were also prepared by immersion precipitation and used as FO membranes. The synthesized FO membranes were characterized by FESEM. The performance evaluation of synthesized nanoparticles revealed that the water flux of Fe3O4 nanoparticles capped with DHAA was higher than that of the chitosan-coated Fe3O4 nanoparticles. At the end of the process, the Fe3O4 nanoparticles were easily separated from the diluted draw solution by applying the magnetic field.  相似文献   

5.
Magnetite (Fe3O4) nanoparticles prepared using hydrothermal approach were employed to study their potential application as magnetic resonance imaging (MRI) contrast agent. The hydrothermal process involves precursors FeCl2·4H2O and FeCl3 with NaOH as reducing agent to initiate the precipitation of Fe3O4, followed by hydrothermal treatment to produce nano-sized Fe3O4. Chitosan (CTS) was coated onto the surface of the as-prepared Fe3O4 nanoparticles to enhance its stability and biocompatible properties. The size distribution of the obtained Fe3O4 nanoparticles was examined using transmission electron microscopy (TEM). The cubic inverse spinel structure of Fe3O4 nanoparticles was confirmed by X-ray diffraction technique (XRD). Fourier transform infrared (FTIR) spectrum indicated the presence of the chitosan on the surface of the Fe3O4 nanoparticles. The superparamagnetic behaviour of the produced Fe3O4 nanoparticles at room temperature was elucidated using a vibrating sample magnetometer (VSM). From the result of custom made phantom study of magnetic resonance (MR) imaging, coated Fe3O4 nanoparticles have been proved to be a promising contrast enhanced agent in MR imaging.  相似文献   

6.
Aspergillus niger xylanase A (XylA) was immobilized onto Fe3O4-coated chitosan magnetic nanoparticles prepared by the layer-by-layer self-assembly approach. The Fe3O4-coated chitosan magnetic nanoparticles showed a high binding capacity of 162.2 mg  g 1-particles and a recovery activity of 56.5% for XylA. The immobilized XylA showed improved thermostability and storage stability compared with free XylA. The immobilized XylA retained 87.5% activity after seven successive reactions by magnetic separation. Xylotriose and xylohexaose were the main products released from birchwood xylan and wheat bran insoluble xylan by immobilized XylA, respectively.  相似文献   

7.
An effective method was developed to isolate toxic heavy metal ions from the aqueous solution by the magnetic nanopolymers. The magnetic sorbent was prepared with radiation‐induced crosslinking polymerization of chitosan (CS), 2‐acrylamido‐glycolic acid (AMGA), and acrylic acid (AAc), which stabilized by magnetite (Fe3O4) as nanoparticles. The formation of magnetic nanoparticles (MNPs) into the hydrogel networks was confirmed by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and Scanning electron microscopy, which revealed the formation of MNPs throughout the hydrogel networks. The swelling behavior of the hydrogels and magnetic ones was evaluated at different pH values. The adsorption activity for heavy metals such as Cu2+ and Co2+ by nonmagnetic and magnetic hydrogels, Fe3O4/CS/(AMGA‐co‐AAc), in terms of adsorption amount was studied. It was revealed that hydrogel networks with magnetic properties can effectively be used in the removal of heavy metal ions pollutants and provide advantageous over conventional ones. POLYM. ENG. SCI., 55:1441–1449, 2015. © 2015 Society of Plastics Engineers  相似文献   

8.
A facile and robust approach is presented to prepare superparamagnetic chitosan (CS) spheres by simply dropping iron ions and CS mixture solution to ammonia aqueous solution. Fourier transform infrared spectra, X‐ray diffractions, and thermogravimetric analyses of the obtained spheres indicate that the composite spheres consisted of CS and Fe3O4. The microstructures of the surface and the inner part of the sphere were observed by scanning electron microscope to indicate nano scale of the Fe3O4 component. The results suggest that the nano sized Fe3O4 particles can be stabilized by CS molecules in the matrix of sphere to avoid aggregation based on their binding interaction. Because of the nano scale distributed Fe3O4 particles, the composite spheres show superparamagnetic properties, and the saturation magnetization of the composite sphere increases linearly with the Fe3O4 content. An electron probe microanalyzer was employed to measure the energy dispersive spectra of the magnetic sphere, through which the element contents at different points along the radius of a magnetic CS sphere have been obtained. It has been found that the Fe3O4 content decreased gradually from outer surface to its inner core. Moreover, the composite sphere was calcined in air at 700°C to prepare spherical hollow sphere. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Ultrafine well‐dispersed Fe3O4 magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The synthesis of Fe3O4/poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS), Fe3O4/poly (acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AM‐co‐AMPS) and Fe3O4/poly (acrylic acid‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AA‐co‐AMPS) ‐core/shell nanogels are reported. The nanogels were prepared via crosslinking copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid, acrylamide and acrylic acid monomers in the presence of Fe3O4 nanoparticles, N,N′‐methylenebisacrylamide (MBA) as a crosslinker, N,N,N′,N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H‐NMR spectra indicated that the compositions of the prepared nanogels are consistent with the designed structure. X‐ray powder diffraction (XRD) and transmission electron microscope (TEM) measurements were used to determine the size of both magnetite and stabilized polymer coated magnetite nanoparticles. The data showed that the mean particle size of synthesized magnetite (Fe3O4) nanoparticles was about 10 nm. The diameter of the stabilized polymer coated Fe3O4 nanogels ranged from 50 to 250 nm based on polymer type. TEM micrographs proved that nanogels possess the spherical morphology before and after swelling. These nanogels exhibited pH‐induced phase transition due to protonation of AMPS copolymer chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A porous magnetic quaternary chitosan salt (pre‐CS/EPTAC/Fe3O4) was successfully prepared via a kind of novel method of preadsorption and desorption. The physicochemical properties of pre‐CS/EPTAC/Fe3O4 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometry. The adsorption of pre‐CS/EPTAC/Fe3O4 for methyl orange (MO) showed much higher dye uptakes compared with Npre‐CS/EPTAC/Fe3O4 without the preadsorption and desorption of MO, and the maximum adsorption capability for MO was 486.1 mg/g. Adsorption isotherms and adsorption kinetics were well fitted by the Freundlich isotherm model and the pseudo‐second order model, respectively. Thermodynamic parameters, such as the standard free energy change, enthalpy change, and entropy change, were also calculated; this indicated that the adsorption was spontaneous and exothermic. The introduction of MO preadsorption and desorption into the process of preparation improved not only the adsorption of MO but also the adsorption of acid red 1 and orange G. Furthermore, pre‐CS/EPTAC/Fe3O4 particles could be easily regenerated and remained almost constant (98.5%) for six cycles of adsorption and desorption. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43448  相似文献   

11.
Ester hydrolysis at oil–water interface by lipase covalently immobilized on ionic liquid‐modified magnetic nanoparticles was investigated. Magnetic supports with a diameter of 10–15 nm were synthesized by covalent binding of ionic liquids (chain length C4 and C8 and anions Cl?, BF4?, and PF6?) on the surface of Fe3O4 nanoparticles. Lipase was covalently immobilized on Fe3O4 nanoparticles using ionic liquids as the coupling reagent. Ionic liquid‐modified magnetic nanoparticle‐grafted lipase preferentially located at the oil–water interface. It has higher catalytic activity than its native counterpart. A modified Michaelis–Menten model was used to elucidate the effect of stirring rate, aqueous–organic phase ratio, total amount of enzyme, and ester chain length. The influences of these conditions on esters hydrolysis at oil–water interface were consistent with the introduction of the ionic liquids interlayer. Ionic liquids could be used to control the oil–water interfacial characteristics during lipase catalyzed hydrolysis, and thus control the behavior of immobilized lipase. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

12.
β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.  相似文献   

13.
In this study, novel tumor targeting nanocarriers comprised of chitosan (CS)/β‐cyclodextrin (β‐CD) magnetic nanoparticles were prepared to improve the photodegradable stability and bioavailability of hydrophobic drug. Resveratrol (Res) with photodegradable and hydrophobic properties was selected as a model drug. The photodegradation rate of Res in Fe3O4 nanoparticles solution was 7.8 times lower than that in the ethanol solution. In addition, the value of the saturation magnetization of CS/β‐CD nanoparticles was found to be 19.56 emu/g with characteristic of superparamagnetism. Approximately 90% Res was entrapped into the CS/β‐CD magnetic nanoparticles with the size distribution ranging from 200 to 359 nm, and the nanoparticles were spherical in shape with high zeta potentials. Furthermore, the formation of CS/β‐CD nanoparticles showed a sustained release in vitro. These results indicated that the obtained CS/β‐CD magnetic nanoparticles were a promising magnetic targeting carrier for photodegradable and hydrophobic drugs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45076.  相似文献   

14.
Yan Wu  Changchun Wang  Shoukuan Fu 《Polymer》2006,47(15):5287-5294
A modified method to prepare chitosan-poly(acrylic acid)(CS-PAA) polymer magnetic microspheres was reported in this paper. First, via self-assembly of positively charged CS and negatively charged Fe3O4 nanoparticles, magnetic CS cores with a large amount of Fe3O4 nanoparticles were successfully prepared. Subsequently, the AA monomers were polymerized on the magetic CS cores based on the reaction system of water-soluble polymer-monomer pairs. These polymer magnetic microspheres had a high Fe3O4 loading content, and showed unique pH-dependent behaviors on the size and zeta potential. From the magnetometer measurements data, the CS-PAA polymer magnetic microspheres also had superparamagnetic property as well as fast magnetic response. A continuous release of the entrapped ammonium glycyrrhizinate in such polymer magnetic microspheres occurred, which confirmed the potential applications of these microspheres for the targeted delivery of drugs.  相似文献   

15.
The formation of Fe3O4 nanoparticles by hydrothermal process has been studied. X‐ray Diffraction measurements were carried out to distinguish between the phases formed during the synthesis. Using the synthesized Fe3O4 nanoparticles, poly(vinyledene fluoride)‐Fe3O4 composite films were prepared by spin coating method. Scanning electron microscopy of the composite films showed the presence of Fe3O4 nanoparticles in the form of aggregates on the surface and inside of the porous polymer matrix. Differential Scanning calorimetry revealed that the crystallinity of PVDF decreased with the addition of Fe3O4. The conductitivity of the composite films was strongly influenced by the Fe3O4 content; conductivity increased with increase in Fe3O4 content. Vibration sample magnetometry results revealed the ferromagnetic behavior of the synthesized iron oxide nanoparticles with a Ms value of 74.50 emu/g. Also the presence of Fe3O4 nanoparticles rendered the composite films magnetic. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Developing appropriate stable electroactive electrode materials for supercapacitor application is the challenging issue, which attracts enormous attention in recent decades. In this regard, Fe3O4 nanoparticles are firstly synthesized on chitosan/graphene oxide-multiwall carbon nanotubes (CS/GM/Fe3O4). Then, polyaniline (PANI) is grafted on it via in situ chemical polymerization and named as CS/GM/Fe3O4/PANI. The as-prepared nanocomposites are characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The capacitive properties of the electrodes are investigated in a three electrode configuration in 0.5 M Na2SO4 electrolyte by various electrochemical techniques. The specific capacitance of CS/GM/Fe3O4/PANI electrode is 1513.4 Fg−1 at 4 Ag−1 which is 1.9 times higher than that of CS/GM/Fe3O4 (800 Fg−1). Meanwhile, the electrodes exhibit appropriate cycle life along with 99.8% and 93.95% specific capacitance at 100 Ag−1 for chitosan/GO-CNT/Fe3O4 and polyaniline grafted chitosan/GO-CNT/Fe3O4, respectively.  相似文献   

17.

Different phosphates and phosphonates have shown excellent coating ability toward magnetic nanoparticles, improving their stability and biocompatibility which enables their biomedical application. The magnetic hyperthermia efficiency of phosphates (IDP and IHP) and phosphonates (MDP and HEDP) coated Fe3O4 magnetic nanoparticles (MNPs) were evaluated in an alternating magnetic field. For a deeper understanding of hyperthermia, the behavior of investigated MNPs in the non-alternating magnetic field was monitored by measuring the transparency of the sample. To investigate their theranostic potential coated Fe3O4-MNPs were radiolabeled with radionuclide 177Lu. Phosphate coated MNPs were radiolabeled in high radiolabeling yield (>?99%) while phosphonate coated MNPs reached maximum radiolabeling yield of 78%. Regardless lower radiolabeling yield both radiolabeled phosphonate MNPs may be further purified reaching radiochemical purity of more than 95%. In vitro stabile radiolabeled nanoparticles in saline and HSA were obtained. The high heating ability of phosphates and phosphonates coated MNPs as sine qua non for efficient in vivo hyperthermia treatment and satisfactory radiolabeling yield justifies their further research in order to develop new theranostic agents.

  相似文献   

18.
A high surface, magnetic Fe3O4@mesoporouspolyaniline core‐shell nanocomposite was synthesized from magnetic iron oxide (Fe3O4) nanoparticles and mesoporouspolyaniline (mPANI). The novel porous magnetic Fe3O4 was obtained by solvothermal method under sealed pressure reactor at high temperature to achieve high surface area. The mesoporouspolyaniline shell was synthesized by in situ surface polymerization onto porous magnetic Fe3O4 in the presence of polyvinylpyrrolidone (PVP) and sodium dodecylbenzenesulfonate (SDBS), as a linker and structure‐directing agent, through ‘blackberry nanostructures’ assembly. The material composition, stoichiometric ratio and reaction conditions play vital roles in the synthesis of these nanostructures as confirmed by variety of characterization techniques. The role of the mesoporouspolyaniline shell is to stabilize the porous magnetic Fe3O4 nanoparticles, and provide direct access to the core Fe3O4 nanoparticles. The catalytic activity of magnetic Fe3O4@mesoporousPANI nanocomposite was evaluated in the cross‐coupling of aryl chlorides and phenols.  相似文献   

19.
In this study, the enhancement of physical absorption of carbon dioxide by Fe3O4‐water nanofluid under the influence of AC and DC magnetic fields was investigated. Furthermore, a gas‐liquid mass transfer model for single bubble systems was applied to predict mass transfer parameters. The coated Fe3O4 nanoparticles were prepared using co‐percipitation method. The results from characterization indicated that the nanoparticles surfaces were covered with hydroxyl groups and nanoparticles diameter were 10–13 nm. The findings showed that the mass transfer rate and solubility of carbon dioxide in magnetic nanofluid increased with an increase in the magnetic field strength. Results indicated that the enhancement of carbon dioxide solubility and average molar flux gas into liquid phase, particularly in the case of AC magnetic field. Moreover, results demonstrated that mass diffusivity of CO2 in nanofluid and renewal surface factor increased when the intensity of the field increased and consequently diffusion layer thickness decreased. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2176–2186, 2017  相似文献   

20.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号