首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

2.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   

3.
The formation of weak polyelectrolyte films on planar and spherical supports has recently evoked major interest, as such coatings allow novel material properties to be tunable by pH and salt adjustment of the polyelectrolyte deposition conditions. We report on the build up of multilayers of the weak polyelectrolytes poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on submicrometer‐sized polystyrene (PS) and silica colloid spheres (~ 500 nm) with the aid of copper ion templating. The copper ions complex to the carboxylate groups of PAA, facilitating the formation of PAA/PAH multilayers on the particles. Regular growth of the layers on the colloid spheres with each polyelectrolyte deposition step was confirmed by microelectrophoresis, single‐particle light scattering (SPLS), and transmission electron microscopy (TEM), with an average bilayer thickness of ~ 3 nm. The polyelectrolyte multilayer‐coated particles formed stable colloidal dispersions, with ζ‐potentials ranging from 30 mV (PAH outer layer) and –50 mV (PAA outer layer). Complementary quartz‐crystal microbalance and UV‐vis spectrophotometry studies on PAA/PAH multilayers formed on planar supports were performed to examine the film formation and the role of copper ion binding to the layers. PAA/PAH multilayers formed on colloid particles were also chemically crosslinked by using the activator 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC). The degree of film crosslinking could be readily controlled by varying the concentration of EDC employed. Following solvent decomposition of the template particles coated with crosslinked PAA/PAH multilayers, intact hollow polymer capsules were obtained. These capsules were found to be impenetrable to polystyrene.  相似文献   

4.
Carbohydrate‐sensitive polymer multilayers are assembled onto flat substrates and colloidal CaCO3 particles via reversible covalent ester formation between the polysaccharide mannan and phenylboronic acid moieties grafted onto poly(acrylic acid) (PAA). The resulting multilayer films are sensitive to several carbohydrates, and show the highest sensitivity to fructose. The response to carbohydrates arises from the competitive binding of small molecular weight sugars and mannan to boronic acid groups within the films, and is observed as a rapid dissolution of the multilayers upon contact with a sugar‐containing solution above a critical concentration. In addition, carbohydrate‐sensitive multilayer capsules are prepared, and their sugar‐dependent stability is investigated by following the release of encapsulated tetramethylrhodamine isothiocyanate‐bovine serum albumin (TRITC‐BSA).  相似文献   

5.
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine).  相似文献   

6.
A bilayer of a hydrophobically modified polyelectrolyte, octadecyl poly(acrylamide) (PAAm), sandwiched between the layers of a hydrophilic polyelectrolyte, poly(ethyleneimine) (PEI), is prepared by the sequential electrostatic–hydrophobic–electrostatic‐interaction‐driven self‐assembly on planar and colloid substrates. This process results in a PEI/[PAAm]2/PEI‐multilayer‐coated substrate. The removal of a PAA/PEI/[PAAm]2/PEI‐multilayer‐coated decomposable colloidal template produces hollow capsules. Irregular hydrophobic domains of the [PAAm]2 bilayer in the PEI/[PAAm]2/PEI‐multilayer capsule are infiltrated with a lipid to obtain a uniform, distinct hydrophobic layer, imparting the capsule with a pseudobilayer vesicle structure.  相似文献   

7.
In this paper, we report an alternative simple method to shift the electroactivity of polyaniline (PANI) films to neutral pH conditions by forming multilayer assemblies with poly(anions) using the layer‐by‐layer (LBL) deposition method. A series of self‐assembled PANI multilayer films with poly(anions), such as sulfonated polyaniline (SPANI), poly(acrylic acid) (PAA), poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS), were prepared by the LBL method. Their electrochemical behavior and catalytic ability for the oxidation of β‐nicotinamide adenine dinucleotide (NADH) in neutral solution were investigated by electrochemistry (EC) combined with surface plasmon spectroscopy (SPS) and the quartz crystal microbalance (QCM) technique. Results indicated that all the films showed very good stability, reversibility, and electroactivity in neutral solution. All the multilayer films can electrocatalyze the oxidation of NADH, with the catalytic ability of PANI/SPANI being higher than that of the other assemblies under the same conditions. The catalytic abilities of the films with the same thickness prepared by the copolymerization method and the LBL method were also compared.  相似文献   

8.
Carbon‐based nanomaterials have been considered promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle‐incorporated cell culture substrates, but only a limited number of studies have been reported on the development of 3D tissue constructs using these nanomaterials. Here, a novel approach to engineer 3D multilayer constructs using layer‐by‐layer (LbL) assembly of cells separated with self‐assembled graphene oxide (GO)‐based thin films is presented. The GO‐based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multilayer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multilayer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co‐culture of cardiomyocytes and other cell types. In this work, the fabrication of stand‐alone multilayer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties is demonstrated. Therefore, this LbL‐based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity.  相似文献   

9.
A cationic and water‐soluble polythiophene [poly[3‐(6‐pyridiniumylhexyl)thiophene bromide] (P3PHT+Br?)] is synthesized and used in combination with anionic poly(3,4‐ethylenedioxythiophene):poly(p‐styrenesulfonate) (PEDOT:PSS)? to produce hybrid coatings on indium tin oxide (ITO). Two coating strategies are established: i) electrostatic layer‐by‐layer assembly with colloidal suspensions of (PEDOT:PSS)?, and ii) modification of an electrochemically prepared (PEDOT:PSS)? film on ITO. The coatings are found to modify the work function of ITO such that it could act as a cathode in inverted 2,5‐diyl‐poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) polymer photovoltaic cells. The interfacial modifier created from the layer‐by‐layer assembly route is used to produce efficient inverted organic photovoltaic devices (power conversion efficiency ~2%) with significant long‐term stability in excess of 500 h.  相似文献   

10.
Due to their exceptional orientation of 2D nanofillers, layer‐by‐layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone‐stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin‐Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel‐alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene‐filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. The technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.  相似文献   

11.
The first study of ion transport across self‐assembled multilayered films of p‐sulfonato‐calix[n]arenes and poly(vinyl amine) (PVA) is presented. The films are prepared by the alternate electrostatic layer‐by‐layer assembly of the anionic calixarenes and cationic PVA on porous polyacrylonitrile (PAN) supports. We use tetra‐p‐sulfonato‐calix[4]arene (calix4), hexa‐p‐sulfonato‐calix[6]arene (calix6), and octa‐p‐sulfonato‐calix[8]arene (calix8) as the calixarenes. Ultraviolet (UV) studies indicate that dipping solutions of pH 6.8, without a supporting electrolyte, are most suited for film preparation. Calix8 is adsorbed in higher concentrations per layer than calix6 or calix4, probably because desorption is less pronounced. The permeation rates, PRs, of monovalent alkali‐metal chlorides (Li, Na, K, Cs), magnesium chloride, divalent transition‐metal chlorides (Ni, Cu, Zn), trivalent lanthanide chlorides (La, Ce, Pr, Sm), and sodium sulfate across the calix4/PVA, calix6/PVA, and calix8/PVA membranes are studied and compared with the corresponding PR values across a poly(styrene sulfonate) (PSS)/PVA multilayer membrane prepared under the same conditions. The PR values of the alkali‐metal salts are between 4 and 17 × 10–6 cm s–1, those of magnesium chloride and the transition‐metal salts are 0.2–1.3 × 10–6 cm s–1, and those of the lanthanide salts are about 0.1 × 10–6 cm s–1. Possible origins for the large differences are discussed. Ion transport is first of all controlled by electrostatic effects such as Donnan rejection of di‐ and trivalent ions in the membrane, but metal‐ion complexation with the calixarene derivatives also plays a role. Complexation occurs especially between Li+ or Na+ and calix4, Mg2+, or Cu2+ and calix6, Cu2+, Zn2+, or the lanthanide ions and calix8. Divalent sulfate ions are found to replace the calixarene polyanions in the membrane. UV studies of the permeate solutions indicate that calix4 especially is displaced during sulfate permeation.  相似文献   

12.
The layer‐by‐layer method is an attractive technique for the fabrication of ultrathin nanostructured polyelectrolyte multilayer membranes (PEMM). A simple two‐step procedure is described here for the preparation of an ultrathin, nanostructured membrane comprising a 5–7 nm thick selective layer, consisting only of one single bilayer of poly(diallyldimethylammoniumchloride) and hyperbranched sulfonated poly(aryleneoxindole). These single bilayered membranes exhibit an outstanding solvent‐resistant nanofiltration performance, which is superior to that of commercial membranes as well as to previously reported multilayer membranes having 10–20 bilayers. A comparative study between hyperbranched polyelectrolyte (HPE) and linear polyelectrolyte supports the role of the specific 3D structure of the hyperbranched polyelectrolyte in these excellent separation properties. The work thus encompasses the use of HPEs as an ideal choice for PEMMs, which opens up a new route to significantly decrease the overall membrane preparation time while realizing excellent filtration properties.  相似文献   

13.
Hydrogen‐bonding interactions are an important alternative to electrostatic interactions for assembling multilayer thin films of uncharged components. Herein, a new method is reported for rendering such films stable at pH values close to physiological conditions. Multilayer films based on hydrogen bonding are assembled by the alternate deposition of poly[(styrene sulfonic acid)‐co‐(maleic acid)] (PSSMA) and poly(N‐isopropylacrylamide) (PNiPAAm) at pH 2.5. The use of PSSMA results in multilayers that contain free styrene sulfonate groups, as these moieties do not interact with the PNiPAAm functional groups. Subsequent infiltration of a multivalent ion (Ce4+ or Fe3+) leads to an increase in the total film mass, with little impact on the film morphology, as determined by using atomic force microscopy. To examine the film stability, the resulting films have been exposed to elevated pH (7.1). While there is substantial swelling of the multilayers (25 % and 55 % for Ce4+‐ and Fe3+‐stabilized films, respectively), film loss is negligible. This provides a stark contrast with non‐stabilized films, which disassemble almost immediately upon exposure to pH 7.1. This method represents a simple and effective strategy for stabilizing hydrogen‐bonded structures non‐covalently. Further, the multivalent ions also render the films responsive to changes in the local redox environment, as demonstrated by film disassembly after exposure of Fe3+‐treated films to iodide solutions.  相似文献   

14.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

15.
Nanostructured titania‐polyelectrolyte composite and pure anatase and rutile titania tubes were successfully prepared by layer‐by‐layer (LbL) deposition of a water‐soluble titania precursor, titanium(IV ) bis(ammonium lactato) dihydroxide (TALH) and the oppositely charged poly(ethylenimine) (PEI) to form multilayer films. The tube structure was produced by depositing inside the cylindrical pores of a polycarbonate (PC) membrane template, followed by calcination at various temperatures. The morphology, structure and crystal phase of the titania tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and UV‐vis absorbance measurements. The as‐prepared anatase titania tubes exhibit very promising photocatalytic properties, demonstrated by the degradation of the azodye methyl orange (MO) as a model molecule. They are also easily separated from the reaction system by simple filtration or centrifugation, allowing for straightforward recycling. The reported strategy provides a simple and versatile technique to fabricate titania based tubular nanostructures, which could easily be extended to prepare tubular structures of other materials and may find application in catalysis, chemical sensing, and nanodevices.  相似文献   

16.
The fabrication of self‐healing/healable superhydrophobic films that can conveniently and repeatedly restore the loss of superhydrophobicity caused by severe mechanical damage, such as deep and wide surface scratches, remains challenging. In the present work, conductive superhydrophobic films that are healable by means of an applied voltage or near infrared (NIR) light irradiation are fabricated by depositing a layer of Ag nanoparticles and Ag nanowires (AgNPs‐AgNWs) on a thermally healable polycaprolactone (PCL)/poly(vinyl alcohol) (PVA) composite film, followed by the deposition of 1H,1H,2H,2H‐perfluorodecanethiol. The AgNPs‐AgNWs layer not only provides micro‐ and nanoscaled hierarchical structures in support of superhydrophobicity but also serves as an electrothermal or photothermal heater to enable healing of the underlying PCL/PVA film under the assistance of a low applied voltage or low‐power NIR light irradiation. Because of the strong adhesion between the PCL/PVA film and the AgNPs‐AgNWs layer, the healability of the PCL/PVA film is successfully conveyed to the conductive superhydrophobic layer, which can rapidly and repeatedly restore the loss of superhydrophobicity caused by cuts several hundreds of micrometers wide. The combined electrothermal and superhydrophobic properties endow the healable conductive superhydrophobic films with improved durability and usefulness as self‐cleaning, antiicing, and snow‐removing surfaces.  相似文献   

17.
Negatively charged gold nanoparticles (AuNPs) and a polyelectrolyte (PE) have been assembled alternately on a polystyrene (PS) colloid by a layer‐by‐layer (LBL) self‐assembly technique to form three‐dimensional (Au/PAH)4/(PSS/PAH)4 multilayer‐coated PS spheres (Au/PE/PS multilayer spheres). The Au/PE/PS multilayer spheres have been used to modify a boron‐doped diamond (BDD) electrode. Cyclic voltammetry is utilized to investigate the properties of the modified electrode in a 1.0 M KCl solution that contains 5.0 × 10?3 M K3Fe(CN)6, and the result shows a dramatically decreased redox activity compared with the bare BDD electrode. The electrochemical behaviors of dopamine (DA) and ascorbic acid (AA) on the bare and modified BDD electrode are studied. The cyclic voltammetric studies indicate that the negatively charged, three‐dimensional Au/PE/PS multilayer sphere‐modified electrodes show high electrocatalytic activity and promote the oxidation of DA, whereas they inhibit the electrochemical reaction of AA, and can effectively be used to determine DA in the presence of AA with good selectivity. The detection limit of DA is 0.8 × 10?6 M in a linear range from 5 × 10?6 to 100 × 10?6 M in the presence of 1 × 10?3 M AA.  相似文献   

18.
A controlled nanoscale fabrication of conducting polymer films sets severe requirements for the preparation method and substrate. A new and versatile approach for producing thin polypyrrole films on a variety of surfaces is presented. Purely inorganic thin films are first prepared from poly(metaphosphate) and tetravalent metal ions using a sequential layer‐by‐layer technique. Redox‐active cerium(IV) polyphosphate multilayer and redox‐inactive zirconium(IV) and hafnium(IV) polyphosphate multilayers are prepared. Cerium‐based polyphosphate films grow exponentially with the number of layers but multilayers containing zirconium or hafnium exhibit a linear buildup process. All the studied systems produce relatively smooth films with initial bilayer thickness less than 2 nm. The cerium(IV) containing film is redox‐active, which is shown by its capability to form a polypyrrole layer on its surface by oxidation of pyrrole monomers in the adjacent aqueous solution. This is a general method to produce thin oxidative films of arbitrary size and form on a wide variety of surfaces.  相似文献   

19.
Titania nanoshells with an external diameter of 10–30 nm and a wall thickness of 3–5 nm were prepared by dissolving the silver cores of Ag@TiO2 nanoparticles in a concentrated solution of ammonium hydroxide. The nanoshells were assembled layer‐by‐layer (LBL), with negatively charged poly(acrylic acid) (PAA) to produce coatings with a network of voids and channels in the interior of the film. The diameter of the channels in the titania shells was comparable to the thickness of the electrical double layer in porous matter (0.3–30 nm). The prepared nanoparticulate films demonstrated strong ion‐sieving properties due to the exclusion of some ions from the diffuse region of the electrical double layer. The permeation of ions could be tuned effectively by the pH and ionic strength of a solution between “open” and “closed” states. The ion‐separation effect was utilized for the selective determination of one of the most important neurotransmitters, dopamine, on a background of ascorbic acid. Under physiological conditions, the negative charge on the surface of TiO2 facilitated the permeation of positively charged dopamine through the LBL film to the electrode, preventing the access of the negatively charged ascorbic acid. The deposition of the nanoshell/polyelectrolyte film resulted in a significant improvement to the selectivity of dopamine determination. The prepared nanoshell films were also found to be compatible with nervous tissue secreting dopamine. Although the obtained data demonstrated the potential of TiO2 LBL films for implantable biomedical devices for nerve tissue monitoring, the problem of electrode poisoning by the by‐products of dopamine reduction has yet to be resolved.  相似文献   

20.
Hollow polyelectrolyte microcapsules containing diazoresins (DZR) were fabricated by the layer‐by‐layer self‐assembly of a polycation, DZR, in alternation with poly(styrenesulfonate) (PSS) onto polystyrene (PS) particles, followed by dissolution of the PS core by tetrahydrofuran (THF). The multilayer film buildup on the colloids was observed by UV‐visible spectroscopy, single particle light scattering (SPLS), and transmission electron microscopy (TEM). The data confirmed regular and stepwise layer formation of DZR and PSS on the colloid particles, with a thickness of about 10 nm for each DZR/PSS bilayer when exposed to aqueous solution, and approximately 5 nm in the “dry state”. The photosensitive nature of the DZR layers was exploited to construct highly stable, covalently attached (polymerized) films by exposure of the ionic self‐assembled DZR/PSS multilayer films to UV‐irradiation. TEM and atomic force microscopy (AFM) confirmed the formation of hollow DZR/PSS multilayer capsules. Osmotic pressure experiments followed by confocal laser scanning microscopy revealed a high mechanical stability of the hollow DZR/PSS capsules. The mechanically robust polymerized multilayer films on the colloids and as free‐standing three‐dimensional hollow capsules are more stable in various chemical environments (i.e., resistant to etching by solvents) than their ionically linked counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号