首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel carbon nanofiber (CNF) ‐filled bismalemide composites were fabricated by a thermokinetic mixing method. The thermal and mechanical properties of composites containing 1 wt % and 2 wt % CNFs were investigated. Thermogravimetric analysis demonstrated that minimal improvement in thermal stability of the nanocomposites was obtained by the addition of CNFs. Dynamic mechanical analysis showed an increase in storage modulus (E′) and glass transition temperature (Tg) upon incorporation of nanofibers. Limiting oxygen index (LOI) has also been found to increase with incorporation of CNFs. Morphological studies of fractured surfaces of the composites has been carried out by scanning electron microscopy to determine the effect of fiber content and dispersion on the failure mechanism. In general, good dispersion was observed, along with agglomeration at some points and some fiber matrix interfacial debonding. A decrease in mechanical strength has been observed and debonding was found as the main failure mechanism. Further research outlook is also presented. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Nanocomposites based on thermoplastic polyurethane (TPU) and organically modified montmorillonite (OMMT) were prepared by melt blending. Organically modified nanoclay was added to the TPU matrix in order to study the influence of the organoclay on nanophase morphology and materials properties. The interaction between TPU matrix and nanofiller was studied by infrared spectroscopy. Morphological characterization of the nanocomposites was carried out using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy techniques. The results showed that melt mixing is an effective process for dispersing OMMT throughout the TPU matrix. Nanocomposites exhibit higher mechanical and thermal properties than pristine TPU. All these properties showed an increasing trend with the increase in OMMT content. Thermogravimetric analysis revealed that incorporation of organoclay enhances the thermal stability of nanocomposites significantly. Differential scanning calorimetry was used to measure the melting point and the glass transition temperature (Tg) of soft segments, which was found to shift toward higher temperature with the inclusion of organoclays. From dynamic mechanical thermal analysis, it is seen that addition of OMMT strongly influenced the storage and loss modulus of the TPU matrix. Dynamic viscoelastic properties of the nanocomposites were explored using rubber process analyzer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A series of crysnanoclay-loaded thermoplastic polyurethane (TPU) elastomer/polycarbonate (PC) nanocomposites have been prepared using twin screw extruders. The physicomechanical properties such as tensile behaviors, flexural properties and impact strength of the composites have been reported. Significant improvement in tensile modulus and flexural modulus were noticed for nanocomposites. The thermal characteristics of nanocomposites have been determined by thermogravimetric analysis (TGA) techniques. Thermal degradation kinetic parameters such as energy of activation (Ea) have been calculated from TGA thermograms for the nanocomposites using three mathematical models namely; Coats–Redfern, Horowitz – Metzger and Broido's methods and the results are compared. The effect of crysnanoclay on the storage modulus (E′), loss modulus (E″), and damping factor (tan δ) as a function of temperature have been measured by dynamic mechanical analysis (DMA). The storage moduli of nanocomposites have been increased after incorporating crysnanoclay in polymer matrix.  相似文献   

4.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

5.
Development of cellulose nanofibrils (CNFs) reinforced polypropylene (PP) nanocomposites using melt compounding processes has received considerable attention. The main challenges are to obtain well‐dispersed CNFs in the polymer matrix and to establish compatible linkages between the CNFs and PP. Manufacturing of CNF reinforced PP nanocomposites was conducted using a twin‐screw co‐rotating extruder with the masterbatch concept. Modifications of CNFs using maleic anhydride polypropylene were performed. The best mechanical properties of the nanocomposites are 1.94 GPa (tensile modulus), 32.8 MPa (tensile strength), 1.63 GPa (flexural modulus), 50.1 MPa (flexural strength), and 3.8 kJ m−2 (impact strength), which represents about 36, 11, 21, 7, and 23% improvement, respectively, compared to those of pure PP (1.43 GPa, 29.5 MPa, 1.35 GPa, 46.9 MPa, and 3.1 kJ m−2). Fracture morphology examination indicated good dispersion of CNFs in the PP matrix was achieved through this specific manufacturing process. MAPP treatments enhanced the interfacial adhesion between the CNFs and PP. POLYM. COMPOS., 37:782–793, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
A series of carbon nanofiber (CNF)/polydimethylsiloxane (PDMS)‐based nanocomposites was prepared by anionic ring opening polymerization of octamethylcyclotetrasiloxane (D4) in presence of pristine CNF and amine‐modified CNF. A detailed study of morphology–property relationship of the nanocomposites was carried out in order to understand the effect of chemical modification and loading of filler on property enhancement of the nanocomposites. An elaborate comparison of structure and properties was carried out for the nanocomposites prepared by in situ and conventional ex situ methods. Pronounced improvement in degree of dispersion of the fillers in the matrix on amine modification of CNFs was reflected in mechanical properties of the modified nanocomposites. Maximum upliftment in mechanical properties was observed for in situ prepared amine modified CNF/hydroxyl PDMS nanocomposites. For 8 phr filler loading, tensile strength increased by 370%, while tensile modulus showed an increase of 515% compared with the virgin elastomer. Furthermore, in situ prepared unmodified CNF/hydroxyl PDMS nanocomposites showed an increase of 141°C in temperature of maximum degradation (Tmax) for 8 phr CNF loading. These results were correlated with the morphological analysis through transmission electron microscopic studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
In this study, the effects of carbon nanofiber (CNF) surface modification on mechanical properties of polyamide 1212 (PA1212)/CNFs composites were investigated. CNFs grafted with ethylenediamine (CNF‐g‐EDA), and CNFs grafted with polyethyleneimine (CNF‐g‐PEI) were prepared and characterized. The mechanical properties of the PA1212/CNFs composites were reinforced efficiently with addition of 0.3 wt % modified CNFs after drawing. The reinforcing effect of the drawn composites was investigated in terms of interfacial interaction, crystal orientation, crystallization properties and so on. After the surface modification of CNFs, the interfacial adhesion and dispersion of CNFs in PA1212 matrix were improved, especially for CNF‐g‐PEI. The improved interfacial adhesion and dispersion of CNFs in PA1212 matrix was beneficial to reinforcement of the composites. Compared with pure PA1212, improved degree of crystal orientation in the PA1212/CNF‐g‐PEI (CNF‐g‐EDA) composites was responsible for reinforcement of mechanical properties after drawing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41424.  相似文献   

8.
Polymer nanocomposites based on the thermoplastic polyurethane (TPU) and organically modified montmorillonite (OMMT) was prepared by melt intercalation technique using a laboratory internal batch mixer followed by compression molding. Varying amount of organically modified nanoclays (1, 3, 5, 7, and 9 wt%) was added to the TPU matrix to examine the influence of organoclay on nanophase morphology and structure–property relationships. The interaction between TPU matrix and nanofiller was studied by infrared spectroscopy. The morphology of nanocomposites was studied by X‐ray diffraction, transmission electron microscopy, and atomic force microscopy that shows melt mixing by a batch mixer is an effective method for dispersing OMMT throughout the TPU matrix. Thermogravimetric analysis revealed that incorporation of organoclay enhances the thermal stability of the nanocomposites significantly. Differential scanning calorimetry was employed to measure the melting point and glass transition temperature (Tg) of soft segments. The reinforcing effect of the organoclay was determined by dynamic mechanical analysis and physico–mechanical testing. The effects of nanoclay concentration and processing parameters on the dynamic viscoelastic properties of the nanocomposites were studied by a rubber process analyzer using frequency sweep. A significant increase in the viscosity and storage modulus of the nanocomposites was found with the increasing clay content. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
Acrylonitrile–styrene–acrylate/natural graphite/carbon nanofiber composites (ASA/NG/CNF) were prepared using a melting blending method. The effects of CNFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) were studied using a scanning electron microscope, a rotational rheometer, and dynamic mechanical analysis (DMA). The addition of CNFs changed the oriented and laminated structure of the ASA/NG composite. The flexural strength of the ASA composite reached a maximum at 6% CNF, and then it began to decrease. The addition of CNFs did not alter the glass‐transition temperature of ASA, but it largely increased the storage modulus of the composite in DMA tests. In the rheological measurements, the complex viscosity and storage modulus of the composite increased as CNF content increased, and the resistance to creep of the composites was significantly increased by the addition of CNFs. The electrical resistivity of the ASA composites decreased from 49.8 Ω cm to 2.3 Ω cm as the CNF content was increased from 0 to 12%. At the same time, the EMI properties of the composites rose from 15 dB to 30 dB in the frequency range 30–1500 MHz. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45455.  相似文献   

10.
In this study, long carbon nanofibers (CNFs) were grown on graphene nanoplatelets (GNPs) by chemical vapor deposition (CVD) technique to develop three-dimensional (3D) bicomponent nanostructures. The structure and properties of graphene before and after CVD process were investigated in details. X-ray photoelectron analysis depicted the formation of Fe-C bonds by the deposition of carbon atoms on the catalyst surface of Fe2O3. This hybrid additive was firstly used as a reinforcing agent in melt compounding to fabricate PA6.6-based nanocomposites with enhanced mechanical and thermal properties. Both GNP and CNF-GNP have enough surface oxygen functional groups to improve the interfacial interactions with polyamide matrix and thus provide good wettability. Also, both neat GNP and its bicomponent additive with CNF also acted as a nucleating agent and allowed the crystal growth in nanocomposite structure. Homogeneous dispersion of nanoparticles was achieved by using thermokinetic mixer during compounding by applying high shear rates. Mechanical results showed that 23 and 34% improvement in flexural and tensile modulus values, respectively, was attained by the addition of 0.5 wt % CNF-GNP hybrid additive. The heat distortion temperature and Vicat softening temperature of the resulting PA6.6 nanocomposites were improved compared to neat PA6.6 material indicating performance enhancement at higher service temperature conditions. CNF was successfully grown on Fe-loaded GNP by CVD method and this hybrid additive was compounded with PA6.6 by melt-mixing process. Mechanical results showed that 34% improvement in tensile modulus value was attained by the addition of 0.5 wt % CNF-GNP hybrid additive because it acted as a nucleating agent and allowed the crystal growth in the nanocomposite structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48347.  相似文献   

11.
Summary: The effect of peroxide functionalization of carbon nanofibers (CNF) on the physical and mechanical properties of polystyrene (PS)–CNF nanocomposites prepared via melt mixing was studied. The CNF functionalization was evidenced by Raman spectroscopy, comparing the ratio of peaks at 1 371 and at 1 590 cm?1 (peaks related to the disordered sp3‐hybridized carbon atom and to the graphitic structure of the sp2‐hybridized carbon atoms, respectively). The variation of the storage (E′) and tensile modulus (E) of the PS–CNF composites as a function of the untreated and peroxide treated CNF concentration were evaluated. Three different peroxide concentrations were used for treating the CNF. It was found that both E′ and E increase with CNF concentration and, in addition, increase further with the peroxide treated CNFs. Nonetheless, it was found that the greater the peroxide concentration used in treating the CNF, the greater the PS degradation via free radical attack on the polymer chain, with the corresponding negative effect on the storage and tensile modulus. Dispersion of the CNF was assessed using scanning and optical microscopy, and the positive effect of the peroxide treatment on the dispersion of the CNF is evidenced.

Tensile stress‐strain behavior of PS/CNF nanocomposites.  相似文献   


12.
S.P. Bao  S.C. Tjong 《Polymer Composites》2009,30(12):1749-1760
Polypropylene (PP) nanocomposites filled with 0.1, 0.3, 0.5, and 1.0 wt% carbon nanofiber (CNF) were prepared via melt compounding in a twin‐screw extruder followed by injection molding. The effects of CNF additions on the structure, mechanical and tensile yielding behavior of PP were investigated. TEM and SEM observations showed that CNFs were dispersed uniformly within PP matrix. Tensile test showed that the yield strength and Young's modulus of PP were improved considerably by adding very low CNF loadings. The reinforcing effect of CNF was also verified from the dynamic mechanical analysis. Impact measurement revealed that the CNF additions were beneficial to enhance the impact toughness of PP. The yield stress of the PP/CNF nanocomposites was found to be strain rate and temperature dependent. The yielding responses of PP/CNF nanocomposites can be described successfully by the Erying's equation and a reinforcing index n. The structure and mechanical property relationship of the nanocomposites is discussed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
Abstract

Blends of thermoplastic polyurethane (TPU) and polypropylene (PP) are highly incompatible because of large differences in polarities and high interfacial tensions. On one hand, PP is added to TPU to improve TPU's thermal stability, chemical properties, mechanical properties (modulus, strength and hardness) and processing performance and to reduce TPU's cost. On the other hand, TPU is blended with PP to improve PP's properties (e.g. abrasion, flexibility, tear strength, shock absorbing capabilities, impact strength, adhesion and paintability/printability). Earlier works in polyurethane/organoclay nanocomposites, PP/organoclay nanocomposites and TPU/PP blends were studied. In our experimental work, both ester and ether based TPU nanocomposites were prepared by melt blending using 3?wt-% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement and blended with PP with/without PP-graft-maleic anhydride as the compatibiliser. Blends of nanoclay filled TPU/PP were evaluated for dynamic mechanical properties such as storage modulus E′, loss modulus E″ and dissipation factor tanδ.  相似文献   

14.
Cellulose nanofibers (CNFs) from oil palm empty fruit bunches were chemically modified by acetylation with acetic anhydride and pyridine (as the solvent and catalyst). The acetylated CNFs showed good dispersion in a polychloroprene (PCR) matrix. The tensile strength and modulus of neat PCR were improved, whereas its elongation at break decreased with increasing nanofiber content. Above the glass‐transition temperature (Tg), the dynamic mechanical analysis profiles showed that the storage modulus of the PCR–cellulose nanocomposites was higher than that of neat PCR. Meanwhile, the thermal stability was still maintained, and the Tg was close to the neat PCR at the 5 wt % addition level of CNFs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40159.  相似文献   

15.
Shape memory polymer nanocomposites based on thermoplastic polyurethane (TPU)/polylactic acid (PLA) blends filled with pristine multi-walled carbon nanotubes (MWCNTs) and modified MWCNTs─COOH were fabricated by direct melt blending technique and investigated for its morphology, mechanical, thermal, electrical, and shape memory properties. Morphological characterizations by using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM) revealed better dispersion of MWCNTs─COOH in the polymer blend, which is attributed to the improved interfacial interactions between the polymer blends and MWCNTs-COOH. Loading of the MWCNTs-COOH in the TPU/PLA blends resulted in the significant improvements in the mechanical properties such as tensile strength and elastic modulus and these effects are more pronounced on increasing the MWCNTs─COOH loading amount, when compared to the pristine MWCNTs filled system. Thermal analysis showed that the glass transition temperature of the blends increases slightly with increasing loading of both pristine and modified MWCNTs in the system. The resistance of nanocomposites decreased from 2 × 1012 Ω to 3.2 × 1010 Ω after adding 3% MWCNTs─COOH. The shape memory performance tests showed that the enhancement of shape recovery by 252% could be achieved at 3% MWCNTs loading, when compared to that of TPU/PLA blends.  相似文献   

16.
Organ‐rectorite/thermoplastic polyurethane (OREC/TPUR) nanocomposites were synthesized via melt intercalation. The dynamic mechanical properties by dynamic mechanical analysis (DMA), thermal and oil‐resistant properties were investigated. The results show that the storage modulus (E′), loss modulus (E″), and glass‐transition temperature (Tg) of the nanocomposites have an increase to some extent than those of pure TPUR. The thermal stability of nanocomposites was also studied in detail by thermal gravity analysis (TGA), which was higher than that of pristine TPUR matrix when the content of organic REC is at 2 wt %, and the decomposition temperature at 10% weight loss of OREC/TPUR is greatly increased up to 330°C from 315°C. Oil uptake of the composites is also significantly reduced in comparison with TPUR matrix, which is ascribed to the good barrier effect of nanosheets of OREC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1165–1169, 2005  相似文献   

17.
通过纳米碳纤维(CNFs)在聚甲醛(POM)基体中的均匀分散以及取向,制备了具有优异力学性能和热性能的POM/CNFs复合材料。利用扫描电子显微镜、透射电子显微镜、拉伸性能测试、热重分析、动态热机械分析测试表征了POM/CNFs复合材料的结构和力学、热学性能。结果表明,CNFs与POM分子链形成氢键相互作用,促进了CNFs在POM基体内分散,同时使POM/CNFs复合材料的结晶度显著提高。随着CNFs含量增加,POM/CNFs复合材料的拉伸强度、储能模量和损耗模量均得到提高。当添加0.5%的CNFs时,拉伸强度、储能模量及损耗模量分别提高了20.5%,127%和58%。进一步研究了高温拉伸对POM/CNFs复合材料性能的影响。结果表明,CNFs沿拉伸方向定向排列,同时复合材料拉伸后结晶度提高,拉伸强度显著增加。  相似文献   

18.
ABSTRACT

A unique, thermoplastic polyurethane (TPU)-based, pressure-sensitive nanocomposites were prepared by the solution mixing method. Poly (methyl methacrylate) (PMMA) microbeads (10µm) were coated with multiwall carbon nanotubes (MWCNT) and dispersed in TPU matrix dissolved in tetrahydrofuran. 1, 2, and 5 wt. % of carbon nanofiber (CNF) were also added to the TPU matrix. The influence of MWCNT coated PMMA-microbeads along with different CNF contents on the pressure sensing properties were studied. Electrical and thermal conductivities were measured at different external loads. The prepared nanocomposites showed repeatable and reliable electric response with increasing external load and are suitable as pressure sensors.  相似文献   

19.
Carbon nanofibers (CNFs) were functionalized by a multistage process including oxidation, reduction and silanization. The chemical modifications were examined by Fourier transform infrared spectroscopy, X‐ray photoelectron spectrometry, Raman spectroscopy and thermogravimetric analysis. The silanized CNFs were then added into an epoxy resin (EPON 828) to study the effect of the surface modification of CNFs on the properties of nanocomposites. For comparison, nanocomposites containing original unmodified CNFs were also investigated. Scanning electron microscopy indicates better dispersion of modified fibers in the epoxy polymer matrix; the mechanical and thermal properties of composites are also improved; the electrical conductivity of the composites is reduced. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
The uniform dispersion of cellulose nanofibers (CNFs) in non‐polar polymer matrices is a primary problem to overcome in creating novel nanocomposites from these materials. The aim of this study was to produce CNF‐polyethylene (PE) nanocomposites by melt compounding followed by injection molding to investigate the possibility of using polyvinyl alcohol (PVA) to improve the dispersion of CNF in the PE matrix. The tensile strength of CNF‐ filled composites was 17.4 MPa with the addition of 5 wt % CNF–PVA, which was 25% higher than the strength of neat PE. The tensile modulus of elasticity increased by 40% with 5% CNF–PVA addition. Flexural properties also significantly increased with increased CNF loading. Shear viscosity increased with increasing CNF content. The elastic moduli of the PE/CNF composites from rheological measurements were greater than those of the neat PE matrix because of the intrinsic rigidity of CNF. Melt creep compliance decreased by about 13% and 45% for the composites with 5 wt % CNF and 10 wt % CNF, respectively. It is expected that the PVA carrier system can contribute to the development of a process methodology to effectively disperse CNFs containing water in a polymer matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42933.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号