首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase-3 (GSK-3) is required during metazoan development to mediate the effects of the extracellular signal wingless/Wnt-1 and hence is necessary for correct cell type specification. GSK-3 also regulates cell fate during Dictyostelium development, but in this case it appears to mediate the effects of extracellular cAMP. By direct measurement of GSK-3 kinase activity during Dictyostelium development, we find that there is a rise in activity at the initiation of multicellular development which can be induced by cAMP. The timing of the rise correlates with the requirement for the Dictyostelium homologue of GSK-3, GSKA, to specify cell fate. We show that loss of the cAMP receptor cAR3 almost completely abolishes the rise in kinase activity and causes a mis-specification of cell fate that is equivalent to that seen in a gskA- mutant. The phenotype of a cAR3(-) mutant however is less severe than loss of gskA and ultimately gives rise to an apparently wild-type fruiting body. These results indicate that in Dictyostelium extracellular cAMP acts via cAR3 to cause a rise in GSKA kinase activity which regulates cell type patterning during the initial stages of multicellularity.  相似文献   

2.
We have analyzed the expression pattern of the Xenopus FGF-3 gene during early development and examined its biological activity in three different bioassays using Xenopus embryos. We show that from the early gastrula stage there is a domain of expression around the blastopore which becomes a posterior domain as the blastopore closes. An anterior ectodermal domain becomes detectable from mid-gastrula stages in the prospective hind-brain, and there are several later domains of expression: the midbrain-hindbrain junction, the otocyst, the pharyngeal pouches and the tailbud region. By using double whole-mount in situ hybridizations we show that the XFGF-3 expression in the brain is dynamically regulated both in time and space during development. The anterior domain of early neurula stage embryos corresponds to the prospective rhombomeres 3-5. By the time the neural tube is closed, XFGF-3 expression is restricted to r4 and later a new domain of expression is established at the midbrain/hindbrain junction. In addition, we show that, despite its difference in receptor specificity, XFGF-3 can induce the formation of mesoderm from animal caps similarly to other FGFs. It also displays a posteriorizing activity on whole embryos similar to other FGFs. Although the absence of maternal expression makes it unlikely that XFGF-3 is involved in mesoderm induction in vivo, its posterior domain of expression during gastrulation and its posteriorizing activity suggests that it participates in the maintenance of mesodermal gene expression and in the FGF mediated patterning of the anteroposterior axis during gastrulation.  相似文献   

3.
p53 activity is essential for normal development in Xenopus   总被引:1,自引:0,他引:1  
BACKGROUND: The tumor suppressor p53 plays a key role in regulating the cell cycle and apoptosis in differentiated cells. Mutant mice lacking functional p53 develop normally but die from multiple neoplasms shortly after birth. There have been hints that p53 is involved in morphogenesis, but given the relatively normal development of p53 null mice, the significance of these data has been difficult to evaluate. To examine the role of p53 in vertebrate development, we have determined the results of blocking its activity in embryos of the frog Xenopus laevis. RESULTS: Two different methods have been used to block p53 protein activity in developing Xenopus embryos--ectopic expression of dominant-negative forms of human p53 and ectopic expression of the p53 negative regulator, Xenopus dm-2. In both instances, inhibition of p53 activity blocked the ability of Xenopus early blastomeres to undergo differentiation and resulted in the formation of large cellular masses reminiscent of tumors. The ability of mutant p53 to induce such developmental tumors was suppressed by co-injection with wild-type human or wild-type Xenopus p53. Cells expressing mutant p53 activated zygotic gene expression and underwent the mid-blastula transition normally. Such cells continued to divide at approximately normal rates but did not form normal embryonic tissues and never underwent terminal differentiation, remaining as large, yolk-filled cell masses that were often associated with the neural tube or epidermis. CONCLUSIONS: In Xenopus, the maternal stockpile of p53 mRNA and protein seems to be essential for normal development. Inhibiting p53 function results in an early block to differentiation. Although it is possible that mutant human p53 proteins have a dominant gain-of-function or neomorphic activity in Xenopus, and that this is responsible for the development of tumors, most of the evidence indicates that this is not the case. Whatever the basis of the block to differentiation, these results indicate that Xenopus embryos are a sensitive system in which to explore the role of p53 in normal development and in developmental tumors.  相似文献   

4.
Oligodendrocyte precursors originate in the ventral ventricular zone of the developing spinal cord. To examine whether the notochord is essential for the development of oligodendrocytes in Xenopus spinal cord the notochord was prevented from forming, ablated, or transplanted during early stages of development. Differentiated oligodendrocytes did not appear in spinal cord regions lacking a notochord in animals in which notochord failed to develop after UV irradiation at the one-cell stage. Similarly, differentiated oligodendrocytes were not detected in the spinal cord adjacent to the site of segmental notochord ablation at embryonic or larval stages. Transplantation of an additional notochord dorsal to the spinal cord induced the premature appearance of differentiated oligodendrocytes in adjacent lateral and dorsal spinal cord white matter. These results indicate that the development of Xenopus spinal cord oligodendrocytes is dependent on local influences from the notochord and suggest that the notochord is essential for oligodendrocyte development in Xenopus spinal cord.  相似文献   

5.
6.
Saquinavir, a peptidomimetic HIV protease inhibitor, has been shown to be effective in reducing patient viral load and reducing mortality. In this report we investigated whether saquinavir is a substrate for the multidrug resistance transporter P-glycoprotein (P-gp), which may reduce the effective intracellular concentration of the drug. G185 cells, which highly express P-gp, are resistant to saquinavir-mediated cytotoxicity, and co-administration of cyclosporine reversed this resistance. Saquinavir and saquinavir mesylate inhibited basolateral to apical transport of the fluorescent dye rhodamine 123 in a polarized epithelial transport assay, a result that suggests competition of these drugs for the P-gp transporter. Finally, we measured specific, directional transport of saquinavir and saquinavir mesylate in an epithelial monolayer model. Transport in the basolateral to apical direction was 3-fold greater than apical to basolateral flux for both saquinavir and saquinavir mesylate and was blocked by co-incubation with the established P-gp reversal agents cyclosporine and verapamil. These data provide evidence that saquinavir is a substrate for the P-gp transporter and suggest that this protein may affect intracellular accumulation of the drug and contribute to its poor oral bioavailability.  相似文献   

7.
We describe a novel 25 kDa protein, geminin, which inhibits DNA replication and is degraded during the mitotic phase of the cell cycle. Geminin has a destruction box sequence and is ubiquitinated anaphase-promoting complex (APC) in vitro. In synchronized HeLa cells, geminin is absent during G1 phase, accumulates during S, G2, and M phases, and disappears at the time of the metaphase-anaphase transition. Geminin inhibits DNA replication by preventing the incorporation of MCM complex into prereplication complex (pre-RC). We propose that geminin inhibits DNA replication during S, G2, and M phases and that geminin destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle.  相似文献   

8.
PURPOSE: To evaluate the roles of fibroblast proteins in the remodeling of the subconjunctival connective tissue, we immunohistochemically assessed the expression of matrix metalloproteinases (MMP)-1 and -2, and the tissue inhibitors of matrix metalloproteinases (TIMP)-1 and -2 in cultured human subconjunctival fibroblasts and in normal and healing human subconjunctival connective tissue. METHODS: Cultured fibroblasts derived from human subconjunctival connective tissue and surgical specimens of normal and healing conjunctiva were immunostained with monoclonal antibodies directed against human MMPs and TIMPs and examined by light and electron microscopy. RESULTS: In the cultured fibroblasts, MMP-1 and TIMP-1 antibodies stained the cytoplasm in a fine granular pattern, suggesting localization of those proteins in the endoplasmic reticulum (ER) and Golgi apparatus. Antibodies to MMP-2 and TIMP-2 reacted with fibroblast cytoplasm in a granular pattern. Electron microscopy of those fibroblasts revealed MMP-1 and TIMP-1 immunoreactivity in the ER cisternae or on the membrane of the ER. In surgical samples, MMP-1 and TIMP-1 were immunohistochemically detected in healing subconjunctival tissue, but not in conjunctival epithelium or normal subconjunctival tissue. CONCLUSIONS: MMPs and TIMPs may be involved in remodeling of subconjunctival connective tissue and in fibroblast population after surgical interventions. These proteins may play a crucial role in the post-operative fibrotic process occurring during scar formation in subconjunctival tissue.  相似文献   

9.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

10.
The effect of suramin, a well known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers, on protein-tyrosine phosphatases (PTPases) has been examined. Suramin is a reversible and competitive PTPase inhibitor with Kis values in the low microM range, whereas the Kis for the dual specificity phosphatase VHR is at least 10-fold higher. Although suramin can also inhibit the activity of the potato acid phosphatase at a slightly higher concentration, it is 2-3 orders of magnitude less effective against the protein Ser/Thr phosphatase 1alpha and the bovine intestinal alkaline phosphatase. Suramin binds to the active site of PTPases with a binding stoichiometry of 1:1. Furthermore, when suramin is bound to the active site of PTPases, its fluorescence is enhanced approximately by 10-fold. This property has allowed the determination of the binding affinity of suramin for PTPases and several catalytically impaired mutant PTPases by fluorescence titration techniques. Thus, the active site Cys to Ser mutants bind suramin with similar affinity as the wild type, while the active site Arg to Ala mutant exhibits a 20-fold reduced affinity toward suramin. Interestingly, the general acid deficient Asp to Ala mutant PTPases display an enhanced affinity toward suramin, which is in accord with their use as improved "substrate-trapping" agents. That suramin is a high affinity PTPase inhibitor is consistent with the observation that suramin treatment of cancer cell lines leads to an increase in tyrosine phosphorylation of several cellular proteins. Given the pleiotropic effects of suramin on many enzyme systems and growth factor-receptor interactions, the exact in vivo actions of suramin require further detailed structure-activity investigation of suramin and its structural analogs.  相似文献   

11.
Trapoxin (cyclo-(L-phenylalanyl-L-phenylalanyl-D-pipecolinyl-L-2-amino-8- oxo-9,10-epoxy-decanoyl)) is a fungal product that induces morphological reversion from transformed to normal in sis-transformed NIH3T3 fibroblasts. Trapoxin was found to cause accumulation of highly acetylated core histones in a variety of mammalian cell lines. In vitro experiments using partially purified mouse histone deacetylase showed that a low concentration of trapoxin irreversibly inhibited deacetylation of acetylated histone molecules. Chemical reduction of an epoxide group in trapoxin completely abolished the inhibitory activity, suggesting that trapoxin binds covalently to the histone deacetylase via the epoxide. In contrast, inhibition by trichostatin A, a known potent inhibitor of histone deacetylase, was reversible. Despite the different mode of inhibition, trapoxin and trichostatin A induced almost the same biological effects on the cell cycle and differentiation. These results strongly suggest that the in vivo effects commonly induced by these agents can be attributed to histone hyperacetylation resulting from the inhibition of histone deacetylase.  相似文献   

12.
The production, survival and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor Fms. Binding of M-CSF results in Fms autophosphorylation on specific tyrosines that act as docking sites for intracellular signaling molecules containing SH2 domains. Using a yeast two-hybrid screen, we cloned a novel adaptor protein which we called 'Mona' for monocytic adaptor. Mona contains one SH2 domain and two SH3 domains related to the Grb2 adaptor. Accordingly, Mona interacts with activated Fms on phosphorylated Tyr697, which is also the Grb2-binding site. Furthermore, Mona contains a unique proline-rich region located between the SH2 domain and the C-terminal SH3 domain, and is apparently devoid of any catalytic domain. Mona expression is restricted to two hematopoietic tissues: the spleen and the peripheral blood mononuclear cells, and is induced rapidly during monocytic differentiation of the myeloid NFS-60 cell line in response to M-CSF. Strikingly, overexpression of Mona in bone marrow cells results in strong reduction of M-CSF-dependent macrophage production in vitro. Taken together, our results suggest an important role for Mona in the regulation of monocyte/macrophage development as controlled by M-CSF.  相似文献   

13.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as alpha-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, alpha-internexin and gefiltin. alpha-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow.  相似文献   

14.
The serine/threonine kinase Xgsk-3 and the intracellular protein beta-catenin are necessary for the establishment of the dorsal-ventral axis in Xenopus. Although genetic evidence from Drosophila indicates that Xgsk-3 is upstream of beta-catenin, direct interactions between these proteins have not been demonstrated. We demonstrate that phosphorylation of beta-catenin in vivo requires an in vitro amino-terminal Xgsk-3 phosphorylation site, which is conserved in the Drosophila protein armadillo. beta-catenin mutants lacking this site are more active in inducing an ectopic axis in Xenopus embryos and are more stable than wild-type beta-catenin in the presence of Xgsk-3 activity, supporting the hypothesis that Xgsk-3 is a negative regulator of beta-catenin that acts through the amino-terminal site. Inhibition of endogenous Xgsk-3 function with a dominant-negative mutant leads to an increase in the steady-state levels of ectopic beta-catenin, indicating that Xgsk-3 functions to destabilize beta-catenin and thus decrease the amount of beta-catenin available for signaling. The levels of endogenous beta-catenin in the nucleus increases in the presence of the dominant-negative Xgsk-3 mutant, suggesting that a role of Xgsk-3 is to regulate the steady-state levels of beta-catenin within specific subcellular compartments. These studies provide a basis for understanding the interaction between Xgsk-3 and beta-catenin in the establishment of the dorsal-ventral axis in early Xenopus embryos.  相似文献   

15.
The great advances made over the last few years in the identification of signalling molecules that pattern the limb bud along the three axes make the limb an excellent model system with which to study developmental mechanisms in vertebrates. The understanding of the signalling networks and their mutual interactions during limb development requires the characterisation of the corresponding downstream genes. In this study we report the expression pattern of Slug, a zinc-finger-containing gene of the snail family, during the development of the limb, and its regulation by distinct axial signalling systems. Slug expression is highly dynamic, and at different stages of limb development can be correlated with the zone of polarizing activity, the progress zone and the interdigital areas. We show that the maintenance of its expression is dependent on signals from the apical ectodermal ridge and independent of Sonic Hedgehog. We also report that, in the interdigit, apoptotic cells lie outside of the domains of Slug expression. The correlation of Slug expression with areas of undifferentiated mesenchyme at stages of tissue differentiation is consistent with its role in early development, in maintaining the mesenchymal phenotype and repressing differentiation processes. We suggest that Slug is involved in the epithelial-mesenchymal interactions that lead to the maintenance of the progress zone.  相似文献   

16.
This paper examines the effects of exposure to mass media messages promoting family planning on the reproductive behaviour of married women in Nigeria using cross-sectional data. Longitudinal data are also used to ensure that exposure to media messages pre-dates the indicators of reproductive behaviour. Cross-sectional analysis suggests that: (1) contraceptive use and intention are positively associated with exposure to mass media messages, and (2) women who are exposed to media messages are more likely to desire fewer children than those who are not exposed to such messages. Similarly, analysis of the longitudinal data shows that exposure to mass media messages is a significant predictor of contraceptive use. Thus, exposure to mass media messages about family planning may be a powerful tool for influencing reproductive behaviour in Nigeria.  相似文献   

17.
Induction of hepatocellular carcinoma in woodchucks by woodchuck hepatitis virus is associated with the activation of N-myc gene expression, usually by viral DNA integration in cis to the N-myc locus. We have examined the consequences of N-myc up-regulation in rodent hepatic cells in culture. Mouse alpha ML hepatocytes infected with a retroviral vector overexpressing the woodchuck N-myc2 gene display a higher proliferation rate than parental alpha ML cells but are morphologically unchanged and do not form colonies in soft agar. However, they display an increased propensity to undergo apoptosis, an effect that is markedly augmented by serum deprivation. Expression of the woodchuck hepatitis virus X gene in alpha ML cells does not alter the growth phenotype of the cells and has no effect upon N-myc-dependent apoptosis. However, apoptosis in N-myc2-expressing alpha ML cells is strongly inhibited by insulin-like growth factor II (IGF II). IGF II gene expression is also strongly up-regulated during hepatic carcinogenesis in vivo in virally infected animals and has been speculated to be part of an autocrine growth-stimulatory pathway. Our results suggest that IGF II may play another role in the development of virus-induced hepatoma: the prevention of programmed cell death triggered by deregulated N-myc expression.  相似文献   

18.
Selegiline, an irreversible and selective inhibitor of monoamine oxidase type B (MAO-B), is metabolized into desmethylselegiline, levomethamphetamine, and levoamphetamine. In animal experiments, desmethylselegiline also has been shown to be an irreversible inhibitor of MAO-B. This study investigated the inhibitory potential of MAO-B and the pharmacokinetics of desmethylselegiline in humans. A double-blind, crossover trial was performed to compare the effects of a single dose (10 mg) of selegiline or desmethylselegiline on MAO-B platelet activity. The urinary excretion of phenylethylamine, which is considered to be a parameter of MAO-B inhibition, also was measured. The concentrations of selegiline, desmethylselegiline, and their metabolites were measured in plasma after administration of the two compounds. Ten healthy volunteers participated in the study. There was a clear inhibition of platelet MAO-B by both compounds. Desmethylselegiline caused a 63.7 +/- 12.7% inhibition of platelet MAO-B compared with 96.4 +/- 3.9% caused by selegiline. The maximal inhibition by desmethylselegiline was reached significantly later after desmethylselegiline (time to reach maximal inhibition [tmax], 27 +/- 20 hours) than after selegiline administration (tmax, 1.4 +/- 1.4 hours). The platelet MAO-B activity returned to baseline levels within 2 weeks, thus reflecting the irreversible nature of the inhibition by both compounds. The cumulative 48-hour excretion of phenylethylamine was 33% lower after desmethylselegiline than after selegiline administration. All three major metabolites of selegiline could be detected in plasma after selegiline administration. Levoamphetamine was the only metabolite of desmethylselegiline. The area under the concentration-time curve from time 0 to 24 hours (AUC0-24) of desmethylselegiline was 33 times higher than that of selegiline, suggesting a better bioavailability of desmethylselegiline. Desmethylselegiline is an orally active, irreversible inhibitor of MAO-B and could possibly be used to treat Parkinson's disease in the same way as selegiline.  相似文献   

19.
20.
A total 17,121 patients with pancreatic cancer have been collected by the Pancreatic Cancer Registration Committee of the Japan Pancreas Society. Significant differences in the postoperative prognosis were observed between patients with tumor limited to the pancreas and with tumor extending to surrounding tissues or adjacent organs. The lymph node metastases and distant metastases were definitive factors on the prognosis after resection. It might was possible for the subdivision of regional lymph nodes as Japanese classification to provide the Stage classification. Further development of the TNM system is necessary for assessing the outcome of most advanced cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号