首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With today's expanding communication systems, a large number of lattice towers to support cellular antennas are being constructed in Brazil. Due to the lightweight of these structures, wind forces are the primary concern in the design. An experimental investigation on the subject was carried out at the Boundary Layer Wind Tunnel Laboratory, University of Western Ontario (UWO), Canada. Three section models were designed and constructed based on existing latticed towers built in Brazil. The wind incidence angle; the tower solidity; the shielding effect; the influence of the wind turbulence on the drag coefficient were analyzed. Measurements were made of the mean and RMS drag and crosswind forces. The results were compared with some existing codes and standards including the Canadian (NBCC, 1995), American (ASCE 7-95, 1995), Australian/New Zealand (AS/NZS 1170.2-2002), Australian (AS 3995-1994), British (BS8100, 1986), Eurocode 1 (European Committee for Standardization, 1995) and Brazilian (NBR 6123, 1988). It is a common approach to consider the wind forces on antennas independent of the lattice tower, without considering the effects of their presence on the computation of the wind forces. The question arises whether this is a good approach or not. These effects can be described by introducing an interference factor. This factor depends, among other things, on the tower solidity. Two models with different solidity were tested for wind incidence angle of 0 degrees and antenna dishes simulated with disks made of Styrofoam attached to the windward face. The results were compared with ESDU.  相似文献   

2.
This paper deals with an investigation of the phenomenon of Helmholtz resonance under oblique wind flow, and an examination of the applicability of the quasi-steady approach to internal pressures in buildings with a dominant opening. Studies on a 1:50 scale model of the Texas Tech University (TTU) test building in a boundary layer simulation show that ‘Helmholtz resonance under oblique wind flow’ produces an extremely strong response in internal pressure fluctuations, in comparison with that obtained under normal onset flow. It is verified that ‘eddy dynamics over the opening’ rather than ‘freestream turbulence’ is responsible for the intense excitation at oblique flow angles, implying that even if the Helmholtz resonance frequency were to be in the tail of the freestream turbulence spectrum, severe excitation would still be possible.Experimental measurements of internal pressures for a range of opening situations also reveal that the quasi-steady approach is inapplicable in the prediction of peak internal pressures. Furthermore, it is demonstrated that while the provisions of the Australian/New Zealand wind loading code—AS/NZS1170.2:2002, which is based upon the quasi-steady method, is adequate as far as mean internal pressures are concerned, it however underpredicts peak internal pressures in some situations. In particular, for the range of situations studied, measurements indicated that peak pressures were up to 25% higher than the AS/NZS1170.2:2002 provisions, in the case of openings in the positive pressure and sidewall regions. It is also shown that for openings located in the sidewall region, peak internal pressures could be just as extremely positive as it can be negative. It is suggested that in the calculation of internal pressures, the AS/NZS1170.2:2002 provide for the use of local pressure factors Kl, that are at present applied only to external pressure calculations. Secondly, the code should provide for internal pressure coefficients to be both negative and positive, when openings are located in sidewall regions. Finally, in order to account for the effects of additional fluctuations arising from Helmholtz resonance oscillations, the possibility of the use of an internal pressure factor Ki should be explored.  相似文献   

3.
This paper deals with an investigation of the characteristics of net pressures on two significant roof areas of a low-rise building with two different dominant wall openings. Wind tunnel boundary layer studies were conducted on a corner and a gable-end roof area of a 1:50 geometric scale model of the Texas Tech University (TTU) test building with a corner and a central wall opening. Mean and peak pressure coefficients, RMS values for the pressure coefficient fluctuations about their mean, as well as roof external pressure—internal pressure correlation coefficients were obtained for the entire 360° wind azimuth range. Frequency domain studies were also conducted for a few selected point roof pressure situations from which the frequency-dependent roof external pressure—internal pressure phase difference functions, root coherence functions and the spectral density functions were obtained. The results show that the mean, RMS and peak net pressure coefficients are particularly enhanced relative to the coefficients for the roof external pressure in the ±50° wind range. Zero-time-lag correlation coefficients of up to −0.64 were obtained in agreement with results from past studies, while root coherence values of up to 0.7 were also recorded. It is demonstrated that the provisions of both the Australian/New Zealand wind loading code—the AS/NZS1170.2:2002, and the American wind loading code—the ASCE7-02, are sometimes non-conservative in the prediction of mean and peak net roof pressure coefficients. These are believed to be due to non-conservative internal pressure coefficients allowed for in these codes.  相似文献   

4.
A wind tunnel model study was carried out on long, low-rise buildings with a steep roof pitch to determine the effect of the length-to-span aspect ratio on the external wind pressure distributions. The study showed a significant increase in the magnitude of the negative pressure coefficients on the leeward roof and wall, with an increase in aspect ratio, for oblique approach winds. These large suction pressures also generate large design wind load effects on the frames near the gable-end. The 1989 edition of the Australian standard for wind loads, AS 1170.2-1989 was found to underestimate the wind loads on steep pitch gable-roof buildings of aspect ratio greater than 3, on areas near the windward gable-end, and hence the critical bending moments in the supporting structural frames. The current Australian/New Zealand wind load standard, AS/NZS 1170.2-2002 specifies increased negative pressure coefficients on the leeward half of high pitch roof buildings, and critical bending moments in the supporting frames calculated from these distributions agree quite well with values obtained from the wind tunnel study. However, other major standards severely underestimate the critical bending moments, and the effective pressure coefficients producing those bending moments, especially on the leeward roof slope.  相似文献   

5.
This research examines the interdependence in time series wind speed data measured in the same location at four different heights. A multiple-equation system known as a vector autoregression is proposed for characterizing the time series dynamics of wind. Additionally, the recently developed method of generalized impulse response analysis provides insight into the cross-effects of the wind series and their responses to shocks. Findings are based on analysis of contemporaneous wind speed time histories taken at 13, 33, 70 and 160 ft above ground level with a sampling rate of 10 Hz. The results indicate that wind speeds measured at 70 ft was the most variable. Further, the turbulence persisted longer at the 70-ft measurement than at the other heights. The greatest interdependence is observed at 13 ft. Gusts at 160 ft led to the greatest persistence to an “own” shock and led to greatest persistence in the responses of the other wind series.  相似文献   

6.
本文简要介绍了欧洲规范1中关于风作用的计算方法,对计算中需要用到的参数分别进行了说明。对中欧风荷载规范的基本风速、粗糙度类别划分、动力响应参数等进行了对比分析,并对算例的数值结果进行了初步比较和评述。  相似文献   

7.
This is the first paper in a series on the effects of parapets on the wind-induced loads on low buildings. Part 1 focuses on the basic aerodynamic effects of parapets and the local (components and cladding) loads. Wind tunnel data were obtained from about 700 pressure taps in the area of a corner panel of 3.7 m×7.6 m (equivalent full-scale dimensions) for several parapet heights and configurations. Significant downward loads were observed which exceed code values for all parapet heights. This may be significant when combined with other loads (such as snow or water). It was also found that parapets alter the suction loads on the roof by changing the location of the corner vortex relative to the roof, for continuous perimetric parapets, and the type of vortex formed, for isolated (single wall) parapets. In the ASCE-defined interior region, the measured coefficients for component and cladding loads exceed those in the code for all parapets and areas examined. For the edge zone, the experimental coefficients for areas less than 1 m2 exceed the code values (except for tall perimetric parapets). However, it was found that the component and cladding loads in the ASCE 7 adequately envelope the uplift caused by perimetric parapets in the corner zone for H=4.6 m, but not for isolated parapets, in particular for areas less than 1 m2. It was also discussed that the ASCE 7 will be unconservative for larger eaves heights since H2 is the correct normalizing factor for roof areas beneath the separated flow. Furthermore, the use of edge zone coefficients in the corner zone for h ?0.9 m should be changed to h/(H+h)?0.23 in the ASCE 7.  相似文献   

8.
The determination of dynamic wind loads on buildings, i.e. pressure and deflection, has gained increasing interest (European Prestandard ENV 1991-2-4, Eurocode 1: basis of design and actions on structures—Part 2-4: actions on structures—wind actions, European Committe for Standardization, Brussels, 1995; DIN 1055 Teil 4 Lastannahmen für Bauten, Verkehrslasten, Windlasten bei nicht schwingungsanfälligen Bauwerken, 1991; N. Hölscher, M. Hortmanns, J. Sahlem, Praxisnahe Erfassung von Windwirkung an Industrie- und Hochbauten, Windwirkung im Bauwesen, Braunschweig, 7, Dreiländertagung D-A-CH 2001, Windtechnologische Gesselschaft, 2001 [1], [2] and [3]). Therefore, the spectral distributions of velocity and pressure fluctuations in wind tunnels are an important quality aspect. While velocity fluctuations can be manipulated by the obstacles used to create the turbulence, pressure fluctuations are influenced by acoustic noise as well. Especially, the first eigenfrequency of the longitudinal mode of the wind tunnel tends to disturb the pressure spectrum.In this paper, a solution for the reduction of low-frequency acoustic pressure fluctuation is presented and its application in the atmospheric boundary layer wind tunnel at the IAG is shown.  相似文献   

9.
As part of the study on the effects of parapets on wind-induced loads on low buildings, measurements of the pressures on parapet surfaces have been carried out. Pressures were measured on both the exterior and interior for several parapet heights, h=0.46, 0.9, 1.8, 2.7 m, and building heights, H=4.6, 9.1, 18 m, for both a uniform perimetric parapet and an isolated parapet on one wall. These data were used to quantify the local (component and cladding) and structural wind loads on the parapets. It was found that the worst structural load coefficients over all wind angles are approximately constant with h and H because of opposing trends of the pressures on the interior and exterior parapet surfaces. That is, the loads increase on the interior surface with H (as they do for roof loads), while decreasing on the exterior surface. The current structural load coefficients prescribed by the ASCE 7-02 capture this well for the building configurations considered. However, the suction component and cladding loads on the interior surface of isolated parapets are not well captured by the code.  相似文献   

10.
Current estimation of peak pressure coefficients and peak wind loads on structures in the ASCE 7 Standard [American Society of Civil Engineers, ASCE Standard, Minimum Design Loads for Buildings and Structures, ASCE 7-02, ASCE, Reston, VA, USA, 2002] is based on the assumption that they are distributed normally. However, this assumption is erroneous in the case of low-rise structures because the time varying pressures and loads along roof edges and ridges have been observed to be generally non-Gaussian [H.W. Tieleman, Z. Ge, M.R. Hajj, T.A. Reinhold, Pressures on a surface-mounted rectangular prism under varying incident turbulence, J. Wind Eng. Ind. Aerodyn. 91 (2003) 1095-1115]. In this article, a new procedure is used to evaluate from one individual non-Gaussian sample record statistics of peak pressure or peak load coefficients. The initial step for the analysis requires the identification and evaluation of the appropriate marginal probability distribution. The results reveal that the distribution of the time histories of surface pressure and load coefficients is well represented by the gamma distribution, whose parameters can be adequately evaluated from the theoretical moment estimators. The corresponding distribution of the peaks of the sample records that represents either the pressure coefficients or the load coefficients, can then be obtained using a standard translation process approach. This information yields the mean and the standard deviation of the sample peaks, which are then used to determine the extreme coefficients associated at any selected probability level of non-exceedence. This latter step can be made by assuming that the distribution of the peaks follows the Extreme Value Type I (Gumbel) distribution. The analysis is applied to pressure measurements on the 1:50 scale model of the experimental building at the Wind Engineering Research Field Laboratory (WERFL), and executed in the Clemson boundary-layer wind tunnel over a range of incident turbulence intensities.  相似文献   

11.
对比分析了中国GB 50009-2012、德国DIN 1055-4、美国ASCE/SEI 7-10、日本AIJ-2004、欧洲BS EN 1991-1-4:2005、加拿大NBC-2005、澳大利亚/新西兰AS/NZS 1170.2:2011、英国BS 6399-2:1997等规范中关于平屋盖围护结构外表面设计风压的有关规定。为便于比较,将各国规范风荷载标准值统一换算为外表面设计风压系数与基本风压乘积的形式。并且将外表面设计风压统一换算为与时距10min、重现期50a的基本风速相对应的值。针对外表面设计风压相关因素,对风向、风压分区、面积折减、建筑尺寸等进行了对比研究。最后,结合平屋盖风洞试验,探讨了外表面设计风压的具体取值建议。研究表明:平屋盖围护结构外表面设计风压的确定,建议考虑360°全风向;对屋盖边缘应进行风压分区,角部也应进行单独的风压分区;屋盖表面不同位置建议采用不同的面积折减公式;针对不同高度或宽高比建筑给定不同的外表面设计风压建议取值。  相似文献   

12.
We study the issue of whether the wind load factors specified in the ASCE 7–95 Standard for hurricane- prone regions on the one hand and extratropical storm regions on the other are mutually consistent with respect to risk. We consider structures or elements whose design is governed by wind loads and for which wind directionality effects are not significant. We present estimates according to which ASCE 7–95 Standard provisions for wind loads inducing the design strength result in (1) safety levels that are considerably lower for hurricane-prone than for extratropical storm regions, and (2) estimates of mean recurrence intervals of hurricane wind loads inducing the design strength of about 500 y if epistemic uncertainties are neglected, and significantly lower than 500 years otherwise.  相似文献   

13.
In warehouse storage applications, it is important to classify the burning behavior of commodities and rank them according to their material flammability for early fire detection and suppression operations. In this study, a preliminary approach towards commodity classification is presented that models the early stage of large-scale warehouse fires by decoupling the problem into separate processes of heat and mass transfer. Two existing nondimensional parameters are used to represent the physical phenomena at the large-scale: a mass transfer number that directly incorporates the material properties of a fuel, and the soot yield of the fuel that controls the radiation observed in the large-scale. To facilitate modeling, a mass transfer number (or B-number) was experimentally obtained using mass-loss (burning rate) measurements from bench-scale tests, following from a procedure that was developed in Part I of this paper.Two fuels are considered: corrugated cardboard and polystyrene. Corrugated cardboard provides a source of flaming combustion in a warehouse and is usually the first item to ignite and sustain flame spread. Polystyrene is typically used as the most hazardous product in large-scale fire testing. The nondimensional mass transfer number was then used to model in-rack flame heights on 6.1-9.1 m (20-30 ft) stacks of ‘C’ flute corrugated cardboard boxes on rack-storage during the initial period of flame spread (involving flame spread over the corrugated cardboard face only). Good agreement was observed between the model and large-scale experiments during the initial stages of fire growth, and a comparison to previous correlations for in-rack flame heights is included.  相似文献   

14.
High strength steels are increasingly common in structural engineering applications owing to their favourable strength to weight ratio, excellent sustainability credentials and attractive physical and mechanical properties. However, these grades are under-used in structures owing to a lack of reliable information relating to their structural performance, particularly at elevated temperature. This paper presents a review of high strength steels in structural applications including the key design considerations. Particular focus is given to the lateral torsional buckling response of laterally unrestrained beams. A finite element model is developed to investigate this behaviour at ambient and elevated temperature. A series of beams between 500 and 4500 mm in length are studied in order to develop buckling curves which are comparable with current design provisions. At ambient temperature, it is shown that all of the buckling curves currently included in Eurocode 3 Part 1-1 give unsatisfactory and potentially unsafe predictions. In elevated temperature conditions, the buckling curves presented in Eurocode 3 Part 1–2 depict the behaviour reasonably well but, at relatively high slenderness values, the standard does not always provide a safe prediction. Revised bucking curves are proposed for high strength steel beams for laterally unrestrained beams made from high strength steel.  相似文献   

15.
Design equations for structural steel members at elevated (fire) temperatures are evaluated through comparisons with nonlinear finite element simulations. The study includes comparative analyses of the American Institute of Steel Construction (AISC) and European Committee for Standardization (CEN) design provisions for laterally unsupported I-shaped columns, beams, and beam-columns at temperatures between ambient to 800 °C. The Eurocode 3 provisions are shown to predict the simulated finite element results within about 10%-20%. On the other hand, the AISC specification predicts strengths that are up to twice as large (unconservative) as the simulated results. The discrepancies are largest for members of intermediate slenderness and temperatures above 300 °C. Modifications to the AISC equations are proposed that provide improved accuracy with calculated strengths typically within 20%-30% of the simulated results. Limitations of the member-based assessments and future research and development needs for structural fire engineering are discussed.  相似文献   

16.
在对中国GB 50011-2010规范[1]和美国ASCE/SEI 7-10[2]规范中的水平地震作用进行对比研究的基础上,详细对比了中美规范中设计反应谱的差异,主要包括了反应谱曲线的基本规定、场地类别的影响和反应谱取值。此外,还对比分析了中美规范中水平地震作用计算的差别,并以一个三层框架结构为例,分别根据GB 50011-2010和ASCE/SEI 7-10,采用底部剪力法(等效侧向力法)进行了对比分析。  相似文献   

17.
对比了EN 1993-1-4∶2006《欧洲不锈钢结构设计规范》、SEI/ASCE 8—02《美国冷成型不锈钢设计规范》和日本《不锈钢建筑结构设计基准》(2002)中压弯构件平面内稳定的设计方法,并结合不锈钢轴心受压构件稳定承载能力的研究成果,基于GB 50018—2002《冷弯薄壁型钢结构技术规范》中相关规定,考虑不锈钢材料力学性能的离散型,提出不锈钢压弯构件平面内弯曲屈曲的设计公式;将设计方法计算结果与国外已有的试验数据进行对比。结果表明,所建议公式的计算结果与国外基本规范具有相近的精度,计算结果偏于安全;最后,对不锈钢压弯构件的设计表达式的改进方向进行展望。该设计表达式可为编制我国不锈钢结构设计规程中压弯构件设计条文时参考。  相似文献   

18.
To better understand the response of stainless steel plate girders loaded in shear, an experimental campaign was carried out at UPC as a part of extensive research on shear behaviour of stainless steel girders.A total of 8 stainless steel plate girders were tested. The primary design variables were, apart from the aspect ratio and slenderness of the web panel, the rigid or non-rigid condition of the end post. In parallel, a numerical model was developed in code ABAQUS [Hibbit, Karlsson and Sorensen Inc., ABAQUS/Standard, Version 6.3. User’s manual. Rhode Island (USA); 2002]. The tests results served as a basis for calibration of numerical models and furthermore for the development and verification of a new approach to structural stainless steel design.Different responses and modes of failure in shear were observed and special attention was taken of the effect of the rigidity of the end post during the analysis of results. The comparative analysis of the experimental results with current codes’ approaches clearly shows that shear design procedures included in Eurocode 3 Part 1.4 [European Committee for Standardisation. ENV 1993-1-4. Eurocode 3: Design of steel structures. Part 1.4: General rules—supplementary rules for stainless steel. Brussels; 1996], which specifically deals with stainless steel structures, are overly conservative.  相似文献   

19.
Time series of pressure coefficients collected on the roof of a house by the Florida Coastal Monitoring Program during landfall of Hurricane Ivan on the Florida panhandle in 2004 are analyzed. Rather than using peak values, which could vary due to the stochastic nature of the data, a probabilistic analysis is performed to characterize extreme values of pressure coefficients and associated wind loads. It is shown that the pressure coefficient time series follows a three parameter Gamma distribution, while the peak pressure follows a two-parameter Gumbel distribution. The analysis yields a probability of non-exceedance of a given threshold of the pressure or load coefficients. For this specific house and specific storm, the 80 percentile load coefficient value of the probability of non-exceedance is −1.7. This is discussed in the context of ASCE 7 GCp values.  相似文献   

20.
This paper presents an experimental analysis of the confinement effects in steel–concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60, 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns’ ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号