首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
The epithelial Na+ Channel (ENaC) mediates Na+ reabsorption in a variety of epithelial tissues. ENaC is composed of three homologous subunits, termed alpha, beta, and gamma. All three subunits participate in channel formation as the absence of any one subunit results in a significant reduction or complete abrogation of Na+ current expression in Xenopus oocytes. To determine the subunit stoichiometry, a biophysical assay was employed utilizing mutant subunits that display significant differences in sensitivity to channel blockers from the wild type channel. Our results indicate that ENaC is a tetrameric channel with an alpha2 beta gamma stoichiometry, similar to that reported for other cation selective channels, such as Kv, Kir, as well as voltage-gated Na+ and Ca2+ channels that have 4-fold internal symmetry.  相似文献   

2.
The human epithelial sodium channel (hENaC) mediates Na+ transport across the apical membrane of epithelia, and mutations in hENaC result in hypertensive and salt-wasting diseases. In heterologous expression systems, maximal hENaC function requires co-expression of three homologous proteins, the alpha, beta, and gammahENaC subunits, suggesting that hENaC subunits interact to form a multimeric channel complex. Using a co-immunoprecipitation assay, we found that hENaC subunits associated tightly to form homo- and heteromeric complexes and that the association between subunits occurred early in channel biosynthesis. Deletion analysis of gammahENaC revealed that the N terminus was sufficient but not necessary for co-precipitation of alphahENaC, and that both the N terminus and the second transmembrane segment (M2) were required for gamma subunit function. The biochemical studies were supported by functional studies. Co-expression of gamma subunits lacking M2 with full-length hENaC subunits revealed an inhibitory effect on hENaC channel function that appeared to be mediated by the cytoplasmic N terminus of gamma, and was consistent with the assembly of nonfunctional subunits into the channel complex. We conclude that the N terminus of gammahENaC is involved in channel assembly.  相似文献   

3.
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.  相似文献   

4.
Mechanically gated ion channels are important modulators of coordinated movement, yet little is known of their molecular properties. We report that C. elegans unc-8, originally identified by gain-of-function mutations that induce neuronal swelling and severe uncoordination, encodes a DEG/ENaC family member homologous to subunits of a candidate mechanically gated ion channel. unc-8 is expressed in several sensory neurons, interneurons, and motor neurons. unc-8 null mutants exhibit previously unrecognized but striking defects in the amplitude and wavelength of sinusoidal tracks inscribed as they move through an E. coli lawn. We hypothesize that UNC-8 channels could modulate coordinated movement in response to body stretch. del-1, a second DEG/ENaC family member coexpressed with unc-8 in a subset of motor neurons, might also participate in a channel that contributes to nematode proprioception.  相似文献   

5.
Baroreceptor nerve endings detect acute fluctuations in arterial pressure. We tested the hypothesis that members of the DEG/ENaC family of cation channels, which are responsible for touch sensation in Caenorhabditis elegans, may be components of the baroreceptor mechanosensor. We found the gamma subunit of ENaC localized to the site of mechanotransduction in baroreceptor nerve terminals innervating the aortic arch and carotid sinus. A functional role for DEG/ENaC members was suggested by blockade of baroreceptor nerve activity and baroreflex control of blood pressure by an amiloride analog that inhibits DEG/ENaC channels. These data suggest that ENaC subunits may be components of the baroreceptor mechanotransducer and pave the way to a better definition of mechanisms responsible for blood pressure regulation and hypertension.  相似文献   

6.
7.
The activity of the epithelial sodium channel (ENaC) in the distal nephron is regulated by an antidiuretic hormone, aldosterone, and insulin, but the molecular mechanisms that mediate these hormonal effects are mostly unknown. We have investigated whether aldosterone, insulin, or activation of protein kinases has an effect on the phosphorylation of the channel. Experiments were performed in an epithelial cell line generated by stable cotransfection of the three subunits (alpha, beta, and gamma) of ENaC. We found that beta and gamma, but not the alpha subunit, are phosphorylated in the basal state. Aldosterone, insulin, and protein kinases A and C increased phosphorylation of the beta and gamma subunits in their carboxyl termini, but none of these agents induced de novo phosphorylation of alpha subunits. Serines and threonines but not tyrosines were found to be phosphorylated. The results suggest that aldosterone, insulin, and protein kinases A and C modulate the activity of ENaC by phosphorylation of the carboxyl termini of the beta and gamma subunits.  相似文献   

8.
In the present study, we investigated the role of channel subunits in the membrane targeting of voltage-dependent L-type calcium channel complexes. We co-expressed the calcium channel pore-forming alpha1C subunit with different accessory beta subunits in HEK-tsA201 cells and examined the subcellular localization of the channel subunits by immunohistochemistry using confocal microscopy and whole-cell radioligand binding studies. While the pore-forming alpha1C subunit exhibited perinuclear staining when expressed alone, and several of the wild-type and mutant beta subunits also exhibited intracellular staining, co-expression of the alpha1C subunit with either the wild-type beta2a subunit, a palmitoylation-deficient beta2a(C3S/C4S) mutant or three other nonpalmitoylated beta isoforms (beta1b, beta3, and beta4 subunits) resulted in the redistribution of both the alpha1C and beta subunits into clusters along the cell surface. Furthermore, the redistribution of calcium channel complexes to the plasma membrane was observed when alpha1C was co-expressed with an N- and C-terminal truncated mutant beta2a containing only the central conserved regions. However, when the alpha1C subunit was co-expressed with an alpha1 beta interaction-deficient mutant, beta2aBID-, we did not observe formation of the channels at the plasma membrane. In addition, an Src homology 3 motif mutant of beta2a that was unable to interact with the alpha1C subunit also failed to target channel complexes to the plasma membrane. Interestingly, co-expression of the pore-forming alpha1C subunit with the largely peripheral accessory alpha2 delta subunit was ineffective in recruiting alpha1C to the plasma membrane, while co-distribution of all three subunits was observed when beta2a was co-expressed with the alpha1C and alpha2 delta subunits. Taken together, our results suggested that the signal necessary for correct plasma membrane targeting of the class C L-type calcium channel complexes is generated as a result of a functional interaction between the alpha1 and beta subunits.  相似文献   

9.
The beta and gamma subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) form tightly associated complexes. To examine functional differences among the large number of possible combinations of unique beta and gamma subunits, we have synthesized and characterized beta gamma complexes containing gamma 5 and gamma 7, two widely distributed gamma subunits. When either gamma 5 or gamma 7 is expressed concurrently with beta 1 or beta 2 subunits in a baculovirus/Sf9 cell system, all four subunit complexes support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 (where "r" indicates recombinant), indicating formation of functional complexes. Each of the complexes was purified by subunit exchange chromatography, using the G203A mutant of rGi alpha 1 as the immobilized ligand. The purified preparations were compared with other recombinant beta gamma subunits, including beta 1 gamma 1 and beta 1 gamma 2, for their ability to modulate type I and II adenylyl cyclase activities; stimulate phosphoinositide-specific phospholipase C beta; support pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1 and Go alpha; and inhibit steady-state GTP hydrolysis catalyzed by Gs alpha, Go alpha, and myristoylated rGi alpha 2. The results emphasize the unique properties of beta 1 gamma 1. The properties of the complexes containing gamma 5 or gamma 7 were similar to each other and to those of beta 1 gamma 2.  相似文献   

10.
BACKGROUND: The pathophysiology of hypertensive crises is poorly understood. To date, no information is available about genetic determinants underlying the individual risk for development of hypertensive urgencies or emergencies. Recently, mutations in the beta subunit (h beta ENaC) and the gamma subunit (h gamma ENaC) of the human epithelial sodium channel (hENaC) have been shown to result in excessive elevation of blood pressure in patients with Liddle's syndrome. METHODS: Using polymerase chain reaction and direct sequencing of amplification products we have screened 90 consecutive out-patients with hypertensive urgency or hypertensive emergency for the presence of mutations in the carboxy terminus of these genes. Furthermore, serum potassium concentrations were determined in all 90 patients, and serum aldosterone levels and plasma renin activity were measured in a subset of 34 patients. RESULTS: Among 71 patients with hypertensive urgency (78.9%) and 19 patients with hypertensive emergency (21.1%) not one individual showed a mutation in genomic DNA extending from codon 532 to codon 637 of h beta ENaC and from codon 525 to codon 651 of h gamma ENaC. Twelve of 90 patients showed mild hypokalaemia (13.3%), 16 of 34 patients had a plasma renin activity below the lower normal range (47.1%) and one of 34 patients had a low serum aldosterone concentration (2.9%). CONCLUSIONS: The present study clearly demonstrates the absence of mutations in the carboxy terminus of the h beta ENaC and h gamma ENaC gene of hENaC in an Austrian cohort of 90 patients suffering from hypertensive crisis.  相似文献   

11.
The interactions of the inhalation anesthetic agent isoflurane with ligand-gated chloride channels were studied using transient expression of recombinant human receptors in a mammalian cell line. Isoflurane enhanced gamma-aminobutyric acid (GABA)-activated chloride currents in cells that expressed heteromeric GABAA receptors consisting of combinations of alpha 1 or alpha 2, beta 1, and gamma 2 subunits and in cells that expressed receptors consisting of combinations of only alpha and beta subunits. Receptors consisting of alpha 2 and gamma 2 subunits were poorly expressed but were sensitive to isoflurane. Receptors consisting of beta 1 and gamma 2 subunits were not expressed. Isoflurane also enhanced glycine-activated chloride currents through homomeric alpha glycine receptors but did not enhance GABA currents in cells expressing homomeric rho 1 receptors. These results show that not all ligand-gated chloride channel receptors are sensitive to isoflurane and, therefore, that the anesthetic interacts with specific structural determinants of these ion channel proteins.  相似文献   

12.
Run-down of L-type Ca2+ channels in CHO cells stably expressing alpha 1c, alpha 1c beta 1a, or alpha 1c beta 1a alpha 2 delta gamma subunits was studied using the patch-clamp technique (single channel recording). The channel activity (NPo) of alpha 1c channels was increased 4- and 8-fold by coexpression with beta 1a and beta 1a alpha 2 delta gamma, respectively. When membranes containing channels composed of different subunits were excised into basic internal solution, the channel activity exhibited run-down, the time-course of which was independent of the subunit composition. The run-down was restored by the application of calpastatin (or calpastatin contained in cytoplasmic P-fraction) + H-fraction (a high molecular mass fraction of bovine cardiac cytoplasm) + 3 mM ATP, which has been shown to reverse the run-down in native Ca2+ channels in the guinea-pig heart. The restoration level was 64.7, 63.5, and 66.4% for channels composed of alpha 1c, alpha 1c beta 1a, and alpha 1c beta 1a alpha 2 delta gamma, respectively, and was thus also independent of the subunit composition. We conclude that run-down of L-type Ca2+ channels occurs via the alpha 1 subunit and that the cytoplasmic factors maintaining Ca2+ channel activity act on the alpha 1 subunit.  相似文献   

13.
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.  相似文献   

14.
gamma-Aminobutyric acidA (GABA(A)) gated chloride ion channels were expressed from human recombinant cDNA using the baculovirus/Sf-9 insect cell expression system. The electrophysiological effects in whole-cell currents of 5-(4-piperidyl) isoxazol-3-ol (4-PIOL), a GABA(A) receptor partial agonist, were investigated on GABA(A) receptor complexes of alpha1beta2gamma2S subunits as well as a slightly modified construct of alpha1(valine 121)beta2gamma2S subunits. Here we report that (1)4-PIOL induces an inward whole-cell current in a concentration-dependent manner in both alpha1(val 121)beta2gamma2S and alpha1(ile 121)beta2gamma2S receptor subunit combinations. (2) The 4-PIOL induced whole-cell currents were more pronounced in alpha1(val 121)beta2gamma2S than in alpha1(ile 121)beta2gamma2S receptor subunit combinations. (3) 4-PIOL inhibited GABA-induced responses on alpha1(ile 121)beta2gamma2S and alpha1(val 121)beta2gamma2S receptor combinations with similar potency.  相似文献   

15.
Liddle's disease is an autosomal dominant form of human hypertension resulting from a basal activation of amiloride-sensitive Na+ channels (ENaC). This channel activation is produced by mutations in the beta- and/or gamma-carboxy-terminal cytoplasmic tails, in many cases causing a truncation of the last 45-76 amino acids. In this study, we tested two hypotheses; first, beta- and gamma-ENaC C-terminal truncation mutants (beta DeltaC and gamma DeltaC), in combination with the wild-type alpha-ENaC subunit, reproduce the Liddle's phenotype at the single channel level, i.e., an increase in open probability (Po), and second, these C-terminal regions of beta- and gamma-ENaC act as intrinsic blockers of this channel. Our results indicate that alpha beta DeltaC gamma DeltaC-rENaC, incorporated into planar lipid bilayers, has a significantly higher single channel Po compared to the wild-type channel (0.85 vs 0.60, respectively), and that 30-mer synthetic peptides corresponding to the C-terminal region of either beta- or gamma-ENaC block the basal-activated channel in a concentration-dependent fashion. Moreover, there was a synergy between the peptides for channel inhibition when added together. We conclude that the increase in macroscopic Na+ reabsorption that occurs in Liddle's disease is at least in part due to an increase in single channel Po and that the cytoplasmic tails of the beta- and gamma-ENaC subunits are important in the modulation of ENaC activity.  相似文献   

16.
Native cylic nucleotide-gated (CNG) channels are composed of alpha and beta subunits. Olfactory CNG channels were expressed from rat cDNA clones in Xenopus oocytes and studied in inside-out patches. Using tandem dimers composed of linked subunits, we investigated the stoichiometry and arrangement of the alpha and beta subunits. Dimers contained three subunit types: alphawt, betawt, and alpham. The alpham subunit lacks an amino-terminal domain that greatly influences gating, decreasing the apparent affinity of the channel for ligand by 9-fold, making it a reporter for inclusion in the tetramer. Homomeric channels from injection of alphawtalphawt dimers and from alphawt monomers were indistinguishable. Channels from injection of alphawtalpham dimers had apparent affinities 3-fold lower than alphawt homomultimers, suggesting a channel with two alphawt and two alpham subunits. Channels from coinjection of alphawtalphawt and betabeta dimers were indistinguishable from those composed of alpha and beta monomers and shared all of the characteristics of the alpha+beta phenotype of heteromeric channels. Coinjection of alphawtalpham and beta beta dimers yielded channels also of the alpha+beta phenotype but with an apparent affinity 3-fold lower, indicating the presence of alpham in the tetramer and that alpha+beta channels have adjacent alpha-subunits. To distinguish between an alpha-alpha-alpha-beta and an alpha-alpha-beta-beta arrangement, we compared apparent affinities for channels from coinjection of alphawtalphawt and betaalphawt or alphawtalphawt and betaalpham dimers. These channels were indistinguishable. To further argue against an alpha-alpha-alpha-beta arrangement, we quantitatively compared dose-response data for channels from coinjection of alphawtalpham and beta beta dimers to those from alpha and beta monomers. Taken together, our results are most consistent with an alpha-alpha-beta-beta arrangement for the heteromeric olfactory CNG channel.  相似文献   

17.
The epithelial Na+ channel (ENaC) is composed of three homologous subunits: alpha, beta and gamma. We used gene targeting to disrupt the beta subunit gene of ENaC in mice. The betaENaC-deficient mice showed normal prenatal development but died within 2 days after birth, most likely of hyperkalemia. In the -/- mice, we found an increased urine Na+ concentration despite hyponatremia and a decreased urine K+ concentration despite hyperkalemia. Moreover, serum aldosterone levels were increased. In contrast to alphaENaC-deficient mice, which die because of defective lung liquid clearance, neonatal betaENaC deficient mice did not die of respiratory failure and showed only a small increase in wet lung weight that had little, if any, adverse physiologic consequence. The results indicate that, in vivo, the beta subunit is required for ENaC function in the renal collecting duct, but, in contrast to the alpha subunit, the beta subunit is not required for the transition from a liquid-filled to an air-filled lung. The phenotype of the betaENaC-deficient mice is similar to that of humans with pseudohypoaldosteronism type 1 and may provide a useful model to study the pathogenesis and treatment of this disorder.  相似文献   

18.
19.
BNC1 is a mammalian neuronal cation channel in the novel DEG/ENaC ion channel family. BNC1 channels are transiently activated by extracellular protons and are constitutively activated by insertion of large residues, such as valine, in place of Gly-430; residue 430 is a site where analogous mutations in some Caenorhabditis elegans family members cause a swelling neurodegeneration. Mutation of Gly-430 to a small amino acid, cysteine, neither generated constitutive currents nor allowed modification of this residue by sulfhydryl-reactive methanethiosulfonate (MTS) compounds. However, when protons activated the channel, Cys-430 became accessible to extracellular MTS reagents, which modified Cys-430 to generate constitutive currents. Fluorescent MTS reagents also labeled Cys-430 in activated channels. These data indicate that protons induce a reversible conformational change that activates BNC1 thereby exposing residue 430 to the extracellular solution. Once Cys-430 is modified with a large chemical group, the channel is prevented from relaxing back to the inactive state. These results link ligand-dependent activation and activation by mutations that cause neurodegeneration.  相似文献   

20.
The gamma 2 subunit is necessary for the expression of the full benzodiazepine pharmacology of GABAA receptors and is one of the major subunits in the brain. In order to determine the location of channels containing the gamma 2 subunit in relation to GABA-releasing terminals on the surface of neurons, a new polyclonal antipeptide antiserum was developed to the gamma 2 subunit and used in high resolution, postembedding, immunoelectron-microscopic procedures. Dual immunogold labelling of the same section for two subunits, and up to three sections of the same synapse reacted for different subunits, were used to characterize the subunit composition of synaptic receptors. The gamma 2 subunit was present in type 2, "symmetrical" synapses in each of the brain areas studied, with the exception of the granule cell layer of the cerebellum. The gamma 2 subunit was frequently co-localized in the same synaptic junction with the alpha 1 and beta 2/3 subunits. The immunolabelling of synapses was coincident with the junctional membrane specialization of the active zone. Immunolabelling for the receptor often occurred in multiple clusters in the synapses. In the hippocampus, the gamma 2 subunit was present in basket cell synapses on the somata and proximal dendrites and in axo-axonic cell synapses on the axon initial segment of pyramidal and granule cells. Some synapses on the dendrites of GABAergic interneurones were densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits. In the cerebellum, the gamma 2 subunit was present in both distal and proximal Purkinje cell dendritic synapses established by stellate and basket cell, respectively. On the soma of Purkinje cells, basket cell synapses were only weakly labelled. Synapses on interneuron dendrites were more densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits than synapses on Purkinje or granule cells. Although immunoperoxidase and immunofluorescence methods show an abundance of the gamma 2 subunit in granule cells, the labelling of Golgi synapses was much weaker with the immunogold method than that of the other cell types. In the globus pallidus, many type 2 synapses were labelled for the gamma 2 subunit together with alpha 1 and beta 2/3 subunits. The results show that gamma 2 and beta 2/3 subunits receptor channels are highly concentrated in GABAergic synapses that also contain the alpha 1 and beta 2/3 subunits. Channels containing the gamma 2 subunit are expressed in synapses on functionally distinct domains of the same neuron receiving GABA from different presynaptic sources. There are quantitative differences in the density of GABAA receptors at synapses on different cell types in the same brain area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号