共查询到15条相似文献,搜索用时 89 毫秒
1.
2.
比较分析隧道火灾纵向排烟方式下的临界风速,研究不同理论公式得出的临界风速差别大小和其随火灾规模、隧道尺寸变化的情况.对隧道尺寸和火源规模无量纲处理,以消除隧道尺寸对临界风速的影响.将已有实体隧道火灾试验和缩比例隧道火灾试验测得的临界风速无量纲值作为参照依据,将不同临界风速理论公式计算结果与已有实体和缩比例试验结果作对比,确定临界风速理论计算方法,同时验证了临风速结果对超大断面隧道的适用性. 相似文献
3.
水平隧道火灾通风纵向临界风速模型 总被引:1,自引:0,他引:1
火灾时的烟气控制在隧道防火安全设计中占有很重要的位置,为此通过1/20小尺寸模型实验和全尺寸现场试验对水平隧道火灾通风纵向临界风速进行了研究。根据隧道全尺寸试验和小尺寸实验研究结果,并结合Jae等的小尺寸实验结果以及胡隆华的全尺寸试验和数值模拟结果,建立了水平隧道火灾通风纵向临界风速的预测模型。将模型得到的预测结果跟基于气体火源的实验结果进行对比,结果表明 Wu和Barker通过气体火源小尺寸实验所建立的模型预测值偏低。 相似文献
4.
5.
6.
7.
为了探明火源横向位置对临界风速的影响规律,运用FDS研究马蹄形断面双车道公路隧道内火源位于隧道中心与侧壁两种场景下的临界风速,并改变火源面积,结合理论分析,与前人矩形断面隧道内的研究结果进行对比。结果表明:单位面积热释放速率一定时,临界风速随火源面积的增大而增大;壁面火的临界风速小于中心火的临界风速,与矩形断面隧道存在差异;且随着火源面积的扩大,壁面火与中心火的临界风速比值趋近于1;不能用“镜面效应”解释马蹄形隧道内壁面火与中心火临界风速差异的原因。 相似文献
8.
采用试验与数值模拟研究隧道双火源火灾临界风速变化,重点研究双火源功率和火源间距对临界风速的影响。结果表明:随着火源间距增加,临界风速逐渐降低,当两火源间距达到极限距离时,临界风速不再变化;当进风口侧火源功率确定时,在极限间距内出风口侧火源功率增大时,临界风速增大,说明出风口侧的火源对进风口侧的烟气回流有促进作用;在极限间距内,临界风速随火源间距增加呈二次方递减到一个稳定值;两火源总功率越大,临界风速随着间距增加降低的幅度越明显。并得到了临界风速的预测公式。 相似文献
9.
地铁区间隧道火灾通风模式的数值分析 总被引:1,自引:0,他引:1
介绍了地铁区间隧道火灾常见的几种通风排烟模式,对其中一种最复杂的模式进行了数值分析。模拟分析得出,对于地铁实际工程中的单线盾构圆形隧道,在10 MW火灾强度下,着火区间隧道内2.6~2.9 m/s左右的纵向风速可以有效阻止烟气发生逆流;在着火区间隧道2.9 m/s的纵向风速下,未着火区间隧道两端对送送风速度为1~1.5 m/s时,联络通道内有风速为6 m/s左右的气流流向着火区间隧道,可有效抑制烟气通过联络通道向未着火区间隧道蔓延,保证人员的安全疏散。 相似文献
10.
王君 《建筑热能通风空调》2021,40(2):89-91,81
检验隧道通风系统功能有效性的重要标准就是对区间风速进行实测,而且实测数值应满足相关标准、 规范的要求.结合某地区地铁开通运营前消防验收对地下区间火灾工况风速的实测情况,对长大区间实测风速结果进行了介绍及分析,总结了实测时需注意的事项,并分析了影响测试结果的重要因素,以期为后续线路区间风速的测试提供一些指导. 相似文献
11.
计算地铁区间列车火灾人员所需安全疏散时间,与模拟所得可用安全疏散时间对比,确定区间人员疏散策略及通风临界时间。研究表明:地铁列车外部中间位置着火停靠在区间,火源功率分别为5、7.5、10 MW,需启动纵向通风排烟系统,组织人员向上风向疏散。火源功率为5 MW,纵向通风风速为2.0 m/s时,150~180 s 开始通风可保证人员安全疏散;火源功率为7.5、10 MW,纵向通风风速分别为2.4、2.6 m/s 时,120~180 s 开始通风可保证人员安全疏散。风机由静止转换为事故工况的通风临界时间为120 s,由运转转换为事故工况的通风临界时间为90 s。 相似文献
12.
为探究“卜”形分岔隧道这一特殊隧道结构对隧道火灾临界风速的影响,运用FDS构建了主路渐缩分岔隧道、主路等宽分岔隧道与直线隧道3种结构的缩尺寸隧道模型,通过数值模拟分析隧道渐缩结构与分岔角度对火灾临界风速的影响。研究表明,对于主路渐缩的分岔隧道,当火源所在位置的局部隧道宽度减小时,所需的临界风量变小。而火源位置确定时,隧道的渐缩结构、分岔角度和分岔结构对临界风速的影响不明显,并提出一种适用于隧道工程渐缩段任意火源位置临界风量的计算公式。对于主路位置的火灾,提出无量纲临界风速与无量纲热释放速率的关系式,与前人直线隧道的变化规律相似,而较高的隧道高度导致临界风速的转折点较大。 相似文献
13.
14.