首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp‐knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction‐independence characteristics. Nevertheless, the high‐cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°‐oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow‐cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers  相似文献   

2.
The present paper is concerned with Mode I and Mode II delamination tests performed on three different glass fiber reinforced epoxy composites, chosen to obtain different final structures. The effect of crosshead speed on the fracture resistance of the composites was also analyzed. It was found that Mode I propagation values (GIC) increase as the crosshead speed decreases, probably because of the increase of brittleness in the studied range. An Arrhenius type relation between GIC and the glass transition temperature of the epoxy resin/amine system (Tg) was found. Mode II initiation values (GIICinit) and apparent shear strength (SH) were found to increase with the decrease of Tg. The relation between matrix toughness and composite interlaminar fracture toughness was also considered. Finally, the GIC propagation values were compared to the data available in literature for similar materials.  相似文献   

3.
This paper reports on the Mode I interlaminar fracture toughness improvement of carbon fiber-epoxy composites as a result of incorporating SiC whiskers in the epoxy matrix. Five laminates of unidirectional carbon fiber-epoxy composites at different weight fractions of SiC whiskers were manufactured using hand layup vacuum bagging process. Optical and scanning electron microscopic analysis were conducted to give an insight into the fracture morphogoloy, failure mechanisms, and the energy dissipation mechanisms created by the presence of the whiskers in the composite. Experimental results showed that composites containing 5 wt% whiskers exhibited 67% increase in the crack initiation interlaminar fracture toughness GIC, whereas it exhibited 55% increase in the maximum GIC compared to pristine composite. The optical and SEM fractographs revealed a strong relation between the microstructure of the fractured surfaces and the energy release rate trend of the composites.  相似文献   

4.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
Amorphous poly(ether imide) has been used as interlaminar toughening particulate agent in laminated carbon fiber/epoxy composites. Mode I and Mode II delamination fracture toughness was characterized using the double cantilever beam (DCB) and end-notched flexure (ENF) specimens. The delamination surface was examined using a scanning electron microscopy (SEM) to investigate relationships between the morphology and properties. The results revealed that the PEI-modified composites exhibited a significantly increased fracture toughness, which increased with the PEI content. GIC was improved from 165 to 540 J/m2 (at 1 mm/min crosshead speed). GIIC was improved more significantly from 290 to 1300 J/m2. It is believed that these values could be further improved if the processing cycle were to be optimized.  相似文献   

6.
A new family of particulate modifiers was incorporated into an epoxy‐based model film adhesive system and the performance was evaluated. The particulate modifiers were selected to include a range of particle sizes, chemistry, and functionality. Thermal analysis, lap shear, and fracture energy tests were performed to characterize the performance of the adhesives. The mechanisms of failure for the adhesives were analyzed in relation to the particle modifier characteristics. Significant differences were found for mode I fracture energy when comparing adhesively joined composite specimens in cocured and bonded situations. Large preformed particle modified adhesives had nearly the same GIC values for both cocured and bonded applications, while the GIC values for the much smaller core‐shell particle modified adhesives differed significantly. All particle modified adhesives provided an improvement in mode II fracture toughness over that of the control such that the laminates failed either in compression (through‐thickness direction) or through delamination of the prepreg plies.  相似文献   

7.
《Polymer Composites》2017,38(11):2501-2508
The effects of two thermoplastic micro‐veils, polyamide (PA) and polyethylene terephthalate (PET) veil, on the interlaminar fracture toughness of a glass fiber/vinyl ester (GF/VE) composite were investigated. The veils incorporated into the composite as interleaving materials were first characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), contact angle and tensile testing in order determine the best candidate as toughening agent for the GF/VE composite. Composite laminates were manufactured by vacuum‐assisted resin infusion process. Double cantilever beam (DCB) testing was performed to investigate the Mode I type interlaminar fracture toughness of the composites, which was characterized by critical strain energy release rate (G IC). An increased G IC was obtained by incorporating the PA veil, but it changed negligibly by the addition of the PET veil. The analysis of the composites fracture surface via SEM revealed increased fiber bridging between adjacent plies in the case of PA veil interleaved composites which played a key role in enhancing the Mode I interlaminar fracture toughness. However, the PET veil present in the interlaminar region did not take part in any energy absorbing mechanism during the delamination, thus keeping the G IC of the composite unaltered. POLYM. COMPOS., 38:2501–2508, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
Bismaleimide polymers offer a thermostability that fills in the gap between epoxies and high temperature polyimides. Bismaleimides of the new generation overcome traditional problems of brittleness and difficult processing. The property transpositions from these tougher, hot-melt processable resins to the corresponding carbond fiber composites are detailed, focusing on crack propagation behavior. Particularly, the mode I critical strain energy release rate (GIC) is compared to the mode I interlaminar GIC of the corresponding composites (both unidirectional and woven laminates). Parameters of the transposition are tried to be identified.  相似文献   

9.
Graphene oxide (GO) nanoparticles were introduced in the interlaminar region of carbon fiber–epoxy composites by dispersing it in a thermoplastic polymer carrier such as polyvinylpyrrolidone (PVP). Mode‐I fracture toughness (GIC) was investigated using double cantilever beam testing to evaluate the effect of the GO on the delamination behavior of the composite. The GO content was varied from 0% to 7% by weight as a function of the PVP content. Improvement of ~100% in the Mode I fracture toughness (GIC) was observed compared to composites with no GO. The optimum amount of nanoparticles for improving the interlaminar fracture toughness was found to be ~0.007% by weight of the composite. The increase in the value of flexural strength value was also observed. Scanning electron microscopy of fracture surfaces, X‐ray diffraction, and transmission electron microscopy, and reflectance Fourier transform infrared spectra, as well as Raman spectroscopy results, are presented to support the conclusions. POLYM. ENG. SCI., 59:1199–1208 2019. © 2019 Society of Plastics Engineers  相似文献   

10.
A new cocured process called coresin film infusion (co‐RFI) process, which combines RFI process and prepreg/autoclave process, was introduced and four kinds of commercial carbon fiber prepreg material systems and a kind of resin film were applied to fabricate co‐RFI laminates. The compatibility between the resin film and the prepreg matrix and the application of co‐RFI process were investigated based on the resin flowability, glass transition temperature of cured resin, processing quality of laminate, and variation in resin modulus on cocured interphase region measured by nanoindentation. Furthermore, mode I (GIC), mode II (GIIC) delamination fracture toughness, and flexural strength and modulus were measured to evaluate the mechanical properties of cocured laminates with different prepreg materials. The experimental results show that thickness and fiber volume fraction of co‐RFI laminates with the four kinds of prepreg materials are similar to those of prepreg laminates and RFI laminate with acceptable differences. In addition, there are no obvious defects in co‐RFI laminates. Moreover, the reduced modulus of resin at cocured interface and glass transition temperature values of the mixed resin reflect good compatibility between prepreg matrix resin and RFI resin. The GIC, GIIC values, and flexural performances of cocured laminates lie between and even exceed those of prepreg laminates and RFI laminates, indicating no weakening effect in the cocured interface. Therefore, the co‐RFI process is believed to effectively fabricate composite with low cost and it can be applied using various prepreg systems. POLYM. COMPOS., 34:2008–2018, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
The effect of carbon nanotubes (CNTs) and carbon nanofibres (CNFs) on mode I adhesive fracture energy (GIC) of double cantilever beam (DCB) joints of carbon fibre-reinforced laminates bonded with an epoxy adhesive has been studied. It was observed that the presence of carbon nanofillers in the epoxy adhesive results in a significant increase in the propagation value of mode I adhesive fracture energy with CNTs producing the largest increase. The toughening mechanisms, analysed using scanning electron microscopy (SEM), for the two nanofiller systems differed: pull-out with CNFs, and pull-out and crack bridging with CNTs. At the macroscopic level there was also a change in the failure mode, with an increased proportion of delamination occurring in the nanoreinforced joints in comparison with the unreinforced. Two different surface treatments were also applied to the laminates: grit blasting and atmospheric plasma. The highest fracture energy was obtained in the grit blasted joints.  相似文献   

12.
The effect of varying cooling rate on the microstructure and resulting mechanical properties of a novel fiber-metal laminate (FML) based on a glass fiber-reinforced nylon composite has been investigated. Polished thin sections removed from plain glass fiber/nylon composites and their corresponding fiber-metal laminates indicated that the prevailing microstructure was strongly dependent on the rate of cooling from the melt. Mode I and Mode II interlaminar fracture tests on the plain glass fiber reinforced nylon laminates indicated that the values of GIc and GIIc averaged approximately 1100 J/m2 and 3700 J/m2 respectively at all cooling rates. The degree of adhesion between the aluminum alloy and composite substrates was investigated using the single cantilever beam geometry. Here, the measured values of Gc were similar in magnitude to the Mode I interlaminar fracture energy of the composite, tending to increase slightly with increasing cooling rate. The tensile and flexural fracture properties of the plain composites and the fiber metal laminates were found to increase by between 10% and 20% as the cooling rate was increased by two orders of magnitude. This effect was attributed to over-aging of the aluminum alloy plies at elevated temperature during cooling. Finally, fiber metal laminates based on glass fiber/nylon composites were shown to exhibit an excellent resistance to low velocity impact loading. Damage, in the form of delamination, fiber fracture, matrix cracking in the composite plies, and plastic deformation and fracture in the aluminum layer, was observed under localized impact loading. Here, the fast-cooled fiber metal laminates offered superior post-impact mechanical properties at low and intermediate impact energies, yet very similar results under high impact energies.  相似文献   

13.
The aim of this study is to determine the fracture toughness of phenolic resin and its composite. Fracture tests on phenolic resin resulted in a fracture toughness close to values quoted for unmodified epoxy resins. Composite specimens of glass fiber reinforced phenolic were also tested. The interlaminar fracture toughness in both mode I and mode II failures was determined. The mode I initiation values were lower than the neat resin's toughness. Mode I propagation values were strongly influenced by fiber bridging. The mechanism of fiber bridging was found to be sensitive to specimen dimensions. The effect of fiber bridging on the mode I analysis is discussed. Fiber bridging was also evident in mode II failures. Two different geometries were used for the mode II tests (end loaded split and end notched flexure); a correlation between the results from the two geometries is made.  相似文献   

14.
This investigation is focused on the influence of glass fiber surface treatment on the interlaminar fracture toughness of unidrectional laminates. Three different fiber surface treatments were considered: polyethylene treated fibers to get poor adhesion, silance treated fibers to get good bond strength, and industrial fibers without special treatments with the coupling agents. The interlaminar fracture behavior of unidirectional glass fiber reinforced composites with different fiber surface treatments has been investigated in mode I, mode II, and for the fixed mixed mode I/II ratio 1.33. Double cantilever beam (DCB), end notched flexure (ENF), and mixed mode flexure (MMF) specimens were used. The data obtained from these tests were analyzed by using different analytical approaches and the finite element method. For the fibers treated with the silane coupling agent, a value about 2.5 times higher of mode II interlaminar fracture toughness for crack initiation was obtained in comparison with the polyethylene sized composite. For the composite made from the industrial fibers, a value about 2 times higher was obtained. Because of extensive fiber bridging and pullout in the composites with poor fiber/matrix adhesion, the results of mode I and mixed mode I/II tests did not characterize the interphase quality. In order to determine the interphase quality, the mode II tests are recommended.  相似文献   

15.
Procedures for measuring the crack initiation and arrest toughnesses in Mode II interlaminar fracture in composite materials were analyzed. Different techniques using flexural specimens were studied. The strain energy release rate, G, which is the energy available for crack propagation was calculated using simple beam theory. The calculation takes into account the transverse shear effect. Stable and unstable fractures are analyzed, and conditions required to measure the arrest toughness of interlaminar fracture are discussed. The methodology was applied to the measurement of fracture energy at the onset and arrest of delamination in glass/epoxy laminate.  相似文献   

16.
To measure the sliding mode interlaminar fracture toughness of interply hybrid composites, end notched flexure (ENF) specimens with three different types of stacking sequence have been utilized. Finite element analysis is applied to separate the contribution from different modes on the strain energy release rate. In addition, the methods of beam theory, compliance, and compliance calibration to calculate the GC values are compared. The effects of interface friction, crack length, and specimen width are also discussed. The results show that the crack growth in the three types of specimens is dominated by the sliding mode and the Mode II interlaminar fracture toughness can be approximated. The compliance method is not recommended for hybrid ENF specimens and the effects of interface friction can be neglected. To get rid of the edge effect, the specimen width must be carefully chosen, while the fracture toughness does increase with the initial crack length.  相似文献   

17.
In this article, interlaminar crack initiation and propagation under mode I and II dynamic loading of an epoxy matrix reinforced with unidirectional carbon fibers were evaluated. Delamination in mode I was carried out employing the DCB test (Double Cantilever Beam). In mode II, the ENF test (End Notched Flexure) was used. The fracture toughness in mode I was obtained using the methods of the ASTM D5528 Standard, whereas in mode II, the methods were applied in accordance with the ESIS (European Structural Integrity Society) Protocol. Employing this experimental program, the fatigue curves (ΔG,N) and growth rate curves (ΔG, da/dN) in both fracture modes were determined for an asymmetry ratio R = 0.2. The influence of the manufacturing process of the material on its behavior with respect to crack growth onset may be deduced from the experimental results, mainly the presence of resin bags. Moreover, as the crack growth rate decreases for large crack lengths, crack growth may even cease if the critical fracture energy does not increase above the values obtained in the static characterization of the material. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
Interlaminar fracture properties of melt-infiltrated woven SiC/SiC ceramic matrix composites were investigated using traditional and wedge-loaded double cantilever beam methods. The two methods produced comparable GIC results for some specimens. The difference in boundary conditions between the two methods appeared to influence the crack propagation path. The DCB method, having free-end boundary condition, allowed more interaction between the crack and the composite microstructure than the wedge method did. The effect of fiber tow layout sequence had an effect on the interlaminar properties. Higher toughness was observed for the orientation where crack propagation occurs between planes with more transverse tows. Jump-arrest phenomenon was found to have higher significance on the rising R-curve behavior than fiber bridging.  相似文献   

19.
The aim of this work has been the study of mode I delamination of multiply double cantilever beam specimens of glass fiber/epoxy. The results show an important influence of laminate lay-ups on delamination resistance. The value of GIc at the initiation of delamination varies with laminate curvature coupling Ky/Kx and Kxy/Kx. An empirical model describing this variation has been proposed. In addition, it is seen that the values of GIc at the initiation of delamination and at stable crack growth will be very different. The delamination resistance can be characterized by two constants: GIc corresponds to the initiation of delamination, and GSIp corresponds to the plateau of stable crack propagation. The correlation between experimental measurement and analysis of compliance and energy release rate results reveals significant three-dimensional effects.  相似文献   

20.
Carbon fiber-reinforced epoxy (CF/EP) composites have been widely used in aerospace industry, while poor electrical conductivity and interlaminar shear fracture toughness could reduce their safety as structural components in use. In this work, we achieved simultaneous improvement in electrical conductivity and interlaminar shear strength through interleaved multi-walled carbon nanotubes (MWCNTs) doped thermoplastic polyurethane (TPU) conductive thin films (CTFs), which were prepared by a solution casting method. The experimental results showed that the electrical conductivity of the laminates increased by about 13 and 16 times in the transverse and thickness directions with only about 1 wt % MWCNTs content in the laminates. The end-notch flexure (ENF) tests showed that the mode II interlaminar fracture toughness (GIIC) of composites with 10 wt % MWCNTs CTF interleaf shows a significant increase of about 106%. The enhancement mechanism was further explored through microscopic morphological observation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号