首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as “uremic toxins”. The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.  相似文献   

2.
    
The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.  相似文献   

3.
    
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.  相似文献   

4.
    
Chronic kidney disease (CKD) is a major cause of death worldwide and is associated with a high risk for cardiovascular and all-cause mortality. In CKD, endothelial dysfunction occurs and uremic toxins accumulate in the blood. miR-126 is a regulator of endothelial dysfunction and its blood level is decreased in CKD patients. In order to obtain a better understanding of the physiopathology of the disease, we correlated the levels of miR-126 with several markers of endothelial dysfunction, as well as the representative uremic toxins, in a large cohort of CKD patients at all stages of the disease. Using a univariate analysis, we found a correlation between eGFR and most markers of endothelial dysfunction markers evaluated in this study. An association of miR-126 with all the evaluated uremic toxins was also found, while uremic toxins were not associated with the internal control, specifically cel-miR-39. The correlation between the expression of endothelial dysfunction biomarker Syndecan-1, free indoxyl sulfate, and total p-cresyl glucuronide on one side, and miR-126 on the other side was confirmed using multivariate analysis. As CKD is associated with reduced endothelial glycocalyx (eGC), our results justify further evaluation of the role of correlated parameters in the pathophysiology of CKD.  相似文献   

5.
    
An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.  相似文献   

6.
    
Uremic toxins and gut dysbiosis in advanced chronic kidney disease (CKD) can induce gut leakage, causing the translocation of gut microbial molecules into the systemic circulation. Lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG) are the major gut microbial molecules of Gram-negative bacteria and fungi, respectively, and can induce inflammation in several organs. Here, the fibrosis in the kidney, liver, and heart was investigated in oral C. albicans-administered 5/6 nephrectomized (Candida-5/6 Nx) mice. At 20 weeks post 5/6 Nx, Candida-5/6 Nx mice demonstrated increased 24 h proteinuria, liver enzymes, and serum cytokines (TNF-α, IL-6, and IL-10), but not weight loss, systolic blood pressure, hematocrit, serum creatinine, or gut-derived uremic toxins (TMAO and indoxyl sulfate), compared to in 5/6 Nx alone. The gut leakage in Candida-5/6 Nx was more severe, as indicated by FITC-dextran assay, endotoxemia, and serum BG. The areas of fibrosis from histopathology, along with the upregulated gene expression of Toll-like receptor 4 (TLR-4) and Dectin-1, the receptors for LPS and BG, respectively, were higher in the kidney, liver, and heart. In vitro, LPS combined with BG increased the supernatant IL-6 and TNF-α, upregulated the genes of pro-inflammation and pro-fibrotic processes, Dectin-1, and TLR-4 in renal tubular (HK-2) cells and hepatocytes (HepG2), when compared with LPS or BG alone. This supported the pro-inflammation-induced fibrosis and the possible LPS–BG additive effects on kidney and liver fibrosis. In conclusion, uremia-induced leaky gut causes the translocation of gut LPS and BG into circulation, which activates the pro-inflammatory and pro-fibrotic pathways, causing internal organ fibrosis. Our results support the crosstalk among several organs in CKD through a leaky gut.  相似文献   

7.
    
(1) Background: Soluble Fms-like tyrosine kinase 1 (sFLT1) is an endogenous VEGF inhibitor. sFLT1 has been described as an anti-inflammatory treatment for diabetic nephropathy and heart fibrosis. However, sFLT1 has also been related to peritubular capillary (PTC) loss, which promotes fibrogenesis. Here, we studied whether transfection with sFlt1 aggravates experimental AKI-to-CKD transition and whether sFLT1 is increased in human kidney fibrosis. (2) Methods: Mice were transfected via electroporation with sFlt1. After confirming transfection efficacy, mice underwent unilateral ischemia/reperfusion injury (IRI) and were sacrificed 28 days later. Kidney histology and RNA were analyzed to study renal fibrosis, PTC damage and inflammation. Renal sFLT1 mRNA expression was measured in CKD biopsies and control kidney tissue. (3) Results: sFlt1 transfection did not aggravate renal fibrosis, PTC loss or macrophage recruitment in IRI mice. In contrast, higher transfection efficiency was correlated with reduced expression of pro-fibrotic and pro-inflammatory markers. In the human samples, sFLT1 mRNA levels were similar in CKD and control kidneys and were not correlated with interstitial fibrosis or PTC loss. (4) Conclusion: As we previously found that sFLT1 has therapeutic potential in diabetic nephropathy, our findings indicate that sFLT1 can be administered at a dose that is therapeutically effective in reducing inflammation, without promoting maladaptive kidney damage.  相似文献   

8.
    
A chronic kidney disease (CKD) causes uremic toxin accumulation and gut dysbiosis, which further induces gut leakage and worsening CKD. Lipopolysaccharide (LPS) of Gram-negative bacteria and (1➔3)-β-D-glucan (BG) of fungi are the two most abundant gut microbial molecules. Due to limited data on the impact of intestinal fungi in CKD mouse models, the influences of gut fungi and Lacticaseibacillus rhamnosus L34 (L34) on CKD were investigated using oral C. albicans-administered 5/6 nephrectomy (5/6Nx) mice. At 16 weeks post-5/6Nx, Candida-5/6Nx mice demonstrated an increase in proteinuria, serum BG, serum cytokines (tumor necrotic factor-α; TNF-α and interleukin-6), alanine transaminase (ALT), and level of fecal dysbiosis (Proteobacteria on fecal microbiome) when compared to non-Candida-5/6Nx. However, serum creatinine, renal fibrosis, or gut barrier defect (FITC-dextran assay and endotoxemia) remained comparable between Candida- versus non-Candida-5/6Nx. The probiotics L34 attenuated several parameters in Candida-5/6Nx mice, including fecal dysbiosis (Proteobacteria and Bacteroides), gut leakage (fluorescein isothiocyanate (FITC)-dextran), gut-derived uremic toxin (trimethylamine-N-oxide; TMAO) and indoxyl sulfate; IS), cytokines, and ALT. In vitro, IS combined with LPS with or without BG enhanced the injury on Caco-2 enterocytes (transepithelial electrical resistance and FITC-dextran permeability) and bone marrow-derived macrophages (supernatant cytokines (TNF-α and interleukin-1 β; IL-1β) and inflammatory genes (TNF-α, IL-1β, aryl hydrocarbon receptor, and nuclear factor-κB)), compared with non-IS activation. These injuries were attenuated by the probiotics condition media. In conclusion, Candida administration worsens kidney damage in 5/6Nx mice through systemic inflammation, partly from gut dysbiosis-induced uremic toxins, which were attenuated by the probiotics. The additive effects on cell injury from uremic toxin (IS) and microbial molecules (LPS and BG) on enterocytes and macrophages might be an important underlying mechanism.  相似文献   

9.
    
Endothelial cells are a critical target of the soluble Fms-like tyrosine kinase-1 (sFlt-1), a soluble factor increased in different diseases with varying degrees of renal impairment and endothelial dysfunction, including chronic kidney disease (CKD). Although the mechanisms underlying endothelial dysfunction are multifactorial and complex, herein, we investigated the damaging effects of sFlt-1 on structural and functional changes in endothelial cells. Our results evidenced that sera from patients with CKD stiffen the endothelial cell cortex in vitro, an effect correlated with sFlt-1 levels and prevented by sFlt-1 neutralization. Besides, we could show that recombinant sFlt-1 leads to endothelial stiffening in vitro and in vivo. This was accompanied by cytoskeleton reorganization and changes in the endothelial barrier function, as observed by increased actin polymerization and endothelial cell permeability, respectively. These results depended on the activation of the p38 MAPK and were blocked by the specific inhibitor SB203580. However, sFlt-1 only minimally affected the expression of stiffness-sensitive genes. These findings bring new insight into the mechanism of action of sFlt-1 and its biological effects that cannot be exclusively ascribed to the regulation of angiogenesis.  相似文献   

10.
    
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and the mortality rate continues to be unacceptably high. The biomarkers currently used in clinical practice are considered relevant when there is already significant renal impairment compromising the early use of potentially successful therapeutic interventions. More sensitive and specific biomarkers to detect CKD earlier on and improve patients’ prognoses are an important unmet medical need. The aim of this review is to summarize the recent literature on new promising early CKD biomarkers of renal function, tubular lesions, endothelial dysfunction and inflammation, and on the auspicious findings from metabolomic studies in this field. Most of the studied biomarkers require further validation in large studies and in a broad range of populations in order to be implemented into routine CKD management. A panel of biomarkers, including earlier biomarkers of renal damage, seems to be a reasonable approach to be applied in clinical practice to allow earlier diagnosis and better disease characterization based on the underlying etiologic process.  相似文献   

11.
    
Chronic kidney disease (CKD) patients have a higher risk of developing early cardiovascular disease (CVD). Although vascular calcification (VC) is one of the strongest predictors of CVD risk, its diagnosis among the CKD population remains a serious clinical challenge. This is mainly due to the complexity of VC, which results from various interconnected pathological mechanisms occurring at early stages and at multiples sites, affecting the medial and intimal layers of the vascular tree. Here, we review the most used and recently developed imaging techniques, here referred to as imaging biomarkers, for VC detection and monitoring, while discussing their strengths and limitations considering the specificities of VC in a CKD context. Although imaging biomarkers have a crucial role in the diagnosis of VC, with important insights into CVD risk, circulating biomarkers represent an added value by reflecting the molecular dynamics and mechanisms involved in VC pathophysiological pathways, opening new avenues into the early detection and targeted interventions. We propose that a combined strategy using imaging and circulating biomarkers with a role in multiple VC molecular mechanisms, such as Fetuin-A, Matrix Gla protein, Gla-rich protein and calciprotein particles, should represent high prognostic value for management of CVD risk in the CKD population.  相似文献   

12.
13.
The major cause of mortality in patients with chronic kidney disease (CKD) is atherosclerosis related to traditional and non-traditional risk factors. However, the understanding of the molecular specificity that distinguishes the risk factors for classical cardiovascular disease (CVD) and CKD-related atherosclerosis (CKD-A) is far from complete. In this study we investigated the disease-related differences in the proteomes of patients with atherosclerosis related and non-related to CKD. Plasma collected from patients in various stages of CKD, CVD patients without symptoms of kidney dysfunction, and healthy volunteers (HVs), were analyzed by a coupled label-free and mass spectrometry approach. Dysregulated proteins were confirmed by an enzyme-linked immunosorbent assay (ELISA). All proteomic data were correlated with kidney disease development and were subjected to bioinformatics analysis. One hundred sixty-two differentially expressed proteins were identified. By directly comparing the plasma proteomes from HVs, CKD, and CVD patients in one study, we demonstrated that proteins involved in inflammation, blood coagulation, oxidative stress, vascular damage, and calcification process exhibited greater alterations in patients with atherosclerosis related with CKD. These data indicate that the above nontraditional risk factors are strongly specific for CKD-A and appear to be less essential for the development of “classical” CVD.  相似文献   

14.
    
Vascular diseases of the elderly are a topic of enormous interest in clinical practice, as they have great epidemiological significance and lead to ever-increasing healthcare expenditures. The mechanisms underlying these pathologies have been increasingly characterized over the years. It has emerged that endothelial dysfunction and chronic inflammation play a diriment role among the most relevant pathophysiological mechanisms. As one can easily imagine, various processes occur during aging, and several pathways undergo irreversible alterations that can promote the decline and aberrations that trigger the diseases above. Endothelial dysfunction and aging of circulating and resident cells are the main characteristics of the aged organism; they represent the framework within which an enormous array of molecular abnormalities occur and contribute to accelerating and perpetuating the decline of organs and tissues. Recognizing and detailing each of these dysfunctional pathways is helpful for therapeutic purposes, as it allows one to hypothesize the possibility of tailoring interventions to the damaged mechanism and hypothetically limiting the cascade of events that drive the onset of these diseases. With this paper, we have reviewed the scientific literature, analysing the pathophysiological basis of the vascular diseases of the elderly and pausing to reflect on attempts to interrupt the vicious cycle that connotes the diseases of aging, laying the groundwork for therapeutic reasoning and expanding the field of scientific research by moving from a solid foundation.  相似文献   

15.
    
Endothelial cell senescence is involved in endothelial dysfunction and vascular diseases. However, the detailed mechanisms of endothelial senescence are not fully understood. Here, we demonstrated that deficiency of developmentally regulated GTP-binding protein 2 (DRG2) induces senescence and dysfunction of endothelial cells. DRG2 knockout (KO) mice displayed reduced cerebral blood flow in the brain and lung blood vessel density. We also determined, by Matrigel plug assay, aorta ring assay, and in vitro tubule formation of primary lung endothelial cells, that deficiency in DRG2 reduced the angiogenic capability of endothelial cells. Endothelial cells from DRG2 KO mice showed a senescence phenotype with decreased cell growth and enhanced levels of p21 and phosphorylated p53, γH2AX, senescence-associated β-galactosidase (SA-β-gal) activity, and senescence-associated secretory phenotype (SASP) cytokines. DRG2 deficiency in endothelial cells upregulated arginase 2 (Arg2) and generation of reactive oxygen species. Induction of SA-β-gal activity was prevented by the antioxidant N-acetyl cysteine in endothelial cells from DRG2 KO mice. In conclusion, our results suggest that DRG2 is a key regulator of endothelial senescence, and its downregulation is probably involved in vascular dysfunction and diseases.  相似文献   

16.
    
Leptin is an adipokine that regulates appetite and body mass and has many other pleiotropic functions, including regulating kidney function. Increased evidence shows that chronic kidney disease (CKD) is associated with hyperleptinemia, but the reasons for this phenomenon are not fully understood. In this review, we focused on potential causes of hyperleptinemia in patients with CKD and the effects of elevated serum leptin levels on patient kidney function and cardiovascular risk. The available data indicate that the increased concentration of leptin in the blood of CKD patients may result from both decreased leptin elimination from the circulation by the kidneys (due to renal dysfunction) and increased leptin production by the adipose tissue. The overproduction of leptin by the adipose tissue could result from: (a) hyperinsulinemia; (b) chronic inflammation; and (c) significant lipid disturbances in CKD patients. Elevated leptin in CKD patients may further deteriorate kidney function and lead to increased cardiovascular risk.  相似文献   

17.
18.
    
Uric acid (UA) is synthesized mainly in the liver, intestines, and vascular endothelium as the end product of an exogenous purine from food and endogenously from damaged, dying, and dead cells. The kidney plays a dominant role in UA excretion, and the kidney excretes approximately 70% of daily produced UA; the remaining 30% of UA is excreted from the intestine. When UA production exceeds UA excretion, hyperuricemia occurs. Hyperuricemia is significantly associated with the development and severity of the metabolic syndrome. The increased urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression, and glycolytic disturbances due to insulin resistance may be associated with the development of hyperuricemia in metabolic syndrome. Hyperuricemia was previously thought to be simply the cause of gout and gouty arthritis. Further, the hyperuricemia observed in patients with renal diseases was considered to be caused by UA underexcretion due to renal failure, and was not considered as an aggressive treatment target. The evidences obtained by basic science suggests a pathogenic role of hyperuricemia in the development of chronic kidney disease (CKD) and cardiovascular diseases (CVD), by inducing inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells, and activation of the renin-angiotensin system. Further, clinical evidences suggest that hyperuricemia is associated with the development of CVD and CKD. Further, accumulated data suggested that the UA-lowering treatments slower the progression of such diseases.  相似文献   

19.
20.
    
Vascular calcification (VC) is a risk factor for cardiovascular events and mortality in chronic kidney disease (CKD). Several components influence the occurrence of VC, among which inflammation. A novel uremic toxin, lanthionine, was shown to increase intracellular calcium in endothelial cells and may have a role in VC. A group of CKD patients was selected and divided into patients with a glomerular filtration rate (GFR) of <45 mL/min/1.73 m2 and ≥45 mL/min/1.73 m2. Total Calcium Score (TCS), based on the Agatston score, was assessed as circulating lanthionine and a panel of different cytokines. A hemodialysis patient group was also considered. Lanthionine was elevated in CKD patients, and levels increased significantly in hemodialysis patients with respect to the two CKD groups; in addition, lanthionine increased along with the increase in TCS, starting from one up to three. Interleukin IL-6, IL-8, and Eotaxin were significantly increased in patients with GFR < 45 mL/min/1.73 m2 with respect to those with GFR ≥ 45 mL/min/1.73 m2. IL-1b, IL-7, IL-8, IL-12, Eotaxin, and VEGF increased in calcified patients with respect to the non-calcified. IL-8 and Eotaxin were elevated both in the low GFR group and in the calcified group. We propose that lanthionine, but also IL-8 and Eotaxin, in particular, are a key feature of VC of CKD, with possible marker significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号