首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用连续速度探针研究改性铵油炸药在不同起爆条件下爆速和爆轰成长的连续变化.在起爆条件分别为雷管/160g起爆药柱、雷管/160g起爆药柱/有机玻璃隔板和仅采用雷管时,改性铵油炸药在稳定爆轰阶段的稳定爆速分别为4569m/s、4496m/、4559m/s,爆轰成长距离分别为3.5、7.3和20cm,爆轰成长时间分别为0.01、0.025和0.06ms.结果表明,在相同的装药约束条件下,起爆能量越大,改性铵油炸药爆轰成长时间和爆轰成长距离越短,即越容易发展为稳定爆轰.  相似文献   

2.
The aquarium test is a proven means of obtaining nonidial performance property data for commercial blasting agents. Optical data on the detonation velocity, shock wave in water, and expansion rate of the pipe enclosing the detonation products (in combination with the equilibrium thermodynamic chemistry code BKW) give the C-J state and degree of chemical reaction at the detonation front, as well as information on additional chemical reaction that occurs as the detonation products expand. Specific explosive systems that are studied are ammonium nitrate-fuel oil mixture (ANFO), aluminized ANFO, flaked trinitrotoluene (TNT), and several other commercial products in 10-cm-diam and 20-cm-diam pipes of Plexiglas and clay. Experimental shock pressure data are obtained with lithium niobate transducers placed in the water surrounding the explosive charge. These data show that the addition of ∼ 100-μm aluminum particles to ANFO significantly increases the initial peak shock pressure delivered to the surrounding medium. Peak shock pressures in the water, calculated from the shock-wave orientation, are also useful in comparing performance properties of various commercial explosives.  相似文献   

3.
Prilled/granulated ammonium nitrate is commonly used as a fertilizer and a basic ingredient of industrial explosives, especially of ANFO. One of the most important factors that affect the explosive properties of ANFO is the porosity of the prills/granules. This paper describes an attempt to manufacture ammonium nitrate prills of determined porosity in order to investigate its influence on the ANFO detonation velocity. A method of manufacturing porous ammonium nitrate prills with a high‐level of oil absorption (up to 20% by volume) was developed. The relations between porosity and granulometric distribution of ammonium nitrate prills versus the detonation velocity of ANFO were examined. It has been proved that the detonation velocity of ANFO increases significantly with higher porosity and smaller size of ammonium nitrate prills/granules. The influence of ANFO oxygen balance (researched by changing the content of fuel oil in the mixture) on detonation velocity has been determined for two kinds of ammonium nitrate prills–one with a low and another one with a high level of porosity.  相似文献   

4.
Post-blast fumes are hazardous and known to cause severe health related issues of workers. Further, these harmful gases have a significant impact on the surrounding environment. Thus, it is imperative to have an in-depth understanding of the real time detonation fume generation in underground space to avoid hazardous health risk of the worker. In this context, the mapping of toxic fume concentrations generated by the detonation of ANFO explosives in the actual field is a fascinating area of research that has a great environmental impact. This article examined the real-time analysis of toxic fumes generated by ammonium nitrate fuel oil (ANFO) explosives at various locations of a metalliferous underground mine. Furthermore, detonation parameters of various ANFO explosive compositions were also studied at the mining site. On-site blasting studies were performed with ANFO explosives, and post-detonation fume measurements enabled us to map the CO and NOx concentrations in underground spaces. Toxic fumes like CO and NOx were analyzed before and after each blasting operation at different intervals, and found within the allowed limit as per the Directorate General of Mines Safety guidelines. Additionally, an empirical correlation has been established to evaluate the maximum detonation velocity based on the alteration of ammonium nitrate and fuel oil composition.  相似文献   

5.
Ammonium-nitrate-fuel-oil (ANFO) explosive, one of the most used mining explosives, exhibits highly non-ideal behaviour. The non-ideality of the detonation is manifested in the strong dependence of the detonation velocity on the charge radius and existence and the characteristics of confinement. This can lead to the detonation velocities as low as one-third of the ideal velocity. The literature reported experimental detonation velocities of cylindrical ANFO charges confined in different confiners (aluminium, copper, steel, polymethyl methacrylate, and polyvinyl chloride) are analysed in this paper. An empirical confinement model, which relates the detonation velocity to the charge radius and the mass of the confiner to the mass of explosive ratio per unit length, is proposed. The model predicts the detonation velocity of unconfined and confined ANFO charges with a mean average percentage error of 8.8 %.  相似文献   

6.
ANFO (ammonium nitrate/fuel oil) is a widely used bulk industrial explosive mixture that is considered to be highly “non‐ideal” with long reaction zones, low detonation energies, and large failure diameters. Thus, its detonation poses great challenge for accurate numerical modeling. Herein, we present a numerical model to simulate ANFO based on improved smoothed particle hydrodynamics (SPH) method, which is a mesh‐free Lagrangian method performing well in simulating situations consist of moving interface and large deformation, as happened in high‐velocity impact and explosion. The improved three‐dimensional SPH method incorporated with JWL++ model is used to simulate the detonation of ANFO. Good agreement is observed between simulation and experiment, which indicates that the proposed method performs well in prediction of behavior of ANFO.  相似文献   

7.
赵焕娟  刘婧  周冬雷  林敏 《化工学报》2023,74(2):968-976
为了研究多孔材料对氢气爆轰的抑制作用,在内径80 mm、长6000 mm的爆轰圆管中开展2H2+O2+3Ar预混气爆轰传播实验。在距点火头5000 mm处放置不同孔隙密度(10、20、40 ppi)厚度30 mm的Al2O3泡沫陶瓷和不同厚度(10、30、50 mm)孔隙密度20 ppi的泡沫铁镍金属,分别使用压力传感器、烟膜记录爆轰波压力、胞格结构,计算爆轰波传播速度。结果表明,速度亏损和胞格尺寸随着孔隙密度或厚度的增加而增大,但是均与初始压力成反比。两种多孔材料的材料特性不同,泡沫铁镍金属具有良好的导热性,因此对爆轰波的抑制效果强于Al2O3泡沫陶瓷。  相似文献   

8.
The work described here arose from a study into explosive welding. As part of that study, the impact velocity of stainless steel and titanium plates to grazing detonation of ANFO/perlite, the velocity of detonation were measured. Computer simulation required a new model which copes with an equation of state of low explosives.  相似文献   

9.
We have applied thermal insults on LX‐04 at 185 °C and found that the material expanded significantly, resulting in a bulk density reduction of 12%. Subsequent detonation experiments (three cylinder tests) were conducted on the thermally damaged LX‐04 samples and pristine low‐density LX‐04 samples and the results showed that the fractions reacted were close to 1.0. The thermally damaged LX‐04 and pristine low‐density LX‐04 showed detonation velocities of 7.7–7.8 mm μs−1, significantly lower than that (8.5 mm μs−1) of pristine high‐density LX‐04. Detonation energy densities for the damaged LX‐04, low‐density pristine LX‐04, and hot cylinder shot of LX‐04 were 6.48, 6.62, and 6.58 kJ cm−3, respectively, lower than the detonation energy density of 8.11 kJ cm−3 for the high density pristine LX‐04. The break‐out curves for the detonation fronts showed that the damaged LX‐04 had longer edge lags than the high density pristine LX‐04, indicating that the damaged explosive is less ideal.  相似文献   

10.
A high speed photographic study at a framing rate of 5 × 106 s−1 has been made of the propagation of high velocity detonation in single crystals of α-lead azide. Crystals of cross section 2 mm × 2 mm and greater detonated at∼8000 m/s whereas those of smaller sizes (∼1 mm) deflagrated at ∼ 3000 m/s. Finally, the mechanism of propagation of high velocity detonation has been discussed.  相似文献   

11.
针对一种新的TATB基钝感炸药(Tx),应用组合式电磁粒子速度计(EMV)测试技术,测量了炸药直接加载、增加有机玻璃隔板以及炸药驱动飞片3种加载状态下炸药内部的粒子速度历程和冲击波轨迹。根据测试结果,分析了不同加载压力下炸药的冲击响应过程。结果表明,炸药直接加载时,加载压力最高,Tx钝感炸药很快达到爆轰状态,到爆轰距离约为1.5mm;在增加有机玻璃隔板、加载压力为14.2GPa时,与直接加载时炸药粒子速度一致,Tx钝感炸药的到爆轰距离明显增加,约为5mm;在炸药驱动飞片、加载压力为9.5GPa时,Tx钝感炸药的粒子速度逐渐降低,存在一定钝化现象,到爆轰距离达到20mm以上。  相似文献   

12.
The synthesis of a new high-energy compound trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin is described. The compound has a density of 1.80 g/cm3 and a heat of formation of 17.5 kcal/mol. The detonation pressure is calculated to be 310 kbar and the detonation velocity is calculated to be 8.36 mm/μs by the Kamlet Short Method.  相似文献   

13.
Various measurements under ambient conditions are presented for LX‐17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner‐turning has been measured with an LX‐07 booster, and the dead‐zone results are comparable to the previous TATB‐boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel‐backed samples are faster than the Lucite‐backed samples by 0.6 μs. Bare LX‐07 and LX‐17 charges of 12.7 mm radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX‐07 booster crossed a 10 mm gap with a slight time delay. Steady‐state LX‐17 crossed a 3.5 mm gap but failed to cross a 4.0 mm gap. LX‐17 charge with a 12.7 mm radius run after the booster crossed a 1.5 mm gap but failed to cross a 2.5 mm gap. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in reactive flow JWL++and Linked Cheetah V4, mostly at 4 zones mm−1. Tarantula has four pressure regions: off, initiation, failure, and detonation. The physical basis of the input parameters is considered.  相似文献   

14.
密度对压装B炸药燃烧转爆轰性能的影响   总被引:5,自引:3,他引:2  
以常规武器中常用的B炸药为研究对象,采用电探针及压力传感器测量技术,在相同的实验条件下分别对3种不同密度固体压装B炸药(m(TNT);m(RDX)=40:60)的燃烧转爆轰性能进行了实验研究。B炸药的密度范围为1.597~1.681g/cm^3。实验结果表明,在相同的约束条件下,炸药密度对其燃烧转爆轰(DDT)性能有较大影响。不同密度炸药的DDT性能不同。较低密度的炸药更容易发生DDT现象,固体压装B炸药存在一个燃烧转爆轰的临界密度值。在较强的约束条件下(45号钢管,内径20mm,外径64mm,长500mm),密度为1.597g/cm^3的B炸药发生了DDT现象,诱导爆轰距离为295~310mm。  相似文献   

15.
The energy delivered by explosives is described by means of the useful expansion work along the isentrope of the detonation products. A thermodynamic code (W‐DETCOM) is used, in which a partial reaction model has been implemented. In this model, the reacted fraction of the explosive in the detonation state is used as a fitting factor so that the calculated detonation velocity meets the experimental value. Calculations based on such a model have been carried out for a number of commercial explosives of ANFO and emulsion types. The BKW (Becker‐Kistiakowsky‐Wilson) equation of state is used for the detonation gases with the Sandia parameter set (BKWS). The energy delivered in the expansion (useful work) is calculated, and the values obtained are compared with the Gurney energies from cylinder test data at various expansion ratios. The expansion work values obtained are much more realistic than those from an ideal detonation calculation and, in most cases, the values predicted by the calculation are in good agreement with the experimental ones.  相似文献   

16.
Detonation wave profiles have been determined for RX‐08‐HD (74% HMX paste) loaded in 3 mm square troughs after turning both acute 90° bends and bends with a 1.5 mm inner radius turn and a 4.5 mm outer radius. The explosive troughs were confined with either lucite or copper. We show that the shape of the detonation wavefront can be explained in terms of a Huygens' construction from the leading point to the outer radius. Turbulent behavior occurs between the leading point and the inner edge. The turbulence appears enhanced for the curved samples with copper confinement. The distance the detonation wave has to travel past the turn in order to regain its original symmetry was found to be governed by an exponential time constant of 0.6 µs. Analysis suggests that the leading point alone stays at the straight‐ahead detonation velocity throughout the turn.  相似文献   

17.
The shock sensitivity of a typical sheet explosive RDX-WAX (90:10) has been experimentally determined with gap test arrangement by measuring free surface velocity in different thicknesses of the barrier and shock and particle velocity of non-reactive shock wave in the sheet explosive with Pin Oscillography Technique. It has been found that a shock wave, generated by a point-initiated cylindrical explosive in contact with an aluminium barrier of diameter nearly twice the diameter of the charge, attenuates exponentially and a 6.5 mm thick sheet explosive, of density 1.28 g/cm3 and velocity of detonation 6.43 mm/μs, detonates with 50% probability by a shock wave of 11 kbar pressure in the explosive.  相似文献   

18.
In order to characterize the initial phase of the divergent detonation wave in PBX, a hemispheric explosive sample was initiated by a long cylindrical charge of the same explosive. The tested PBX is composed of 85 wt% of RDX and 15 wt% of binder based on HTPB. This PBX‐RDX presents an effective density of 1.57 g/cm3, and a detonation velocity of 7.90 mm/μs.  相似文献   

19.
HTPB/CL‐20 castable booster explosives were prepared successfully by a cast‐cured process. Scanning electron microscope (SEM) and the charge density test were employed to characterize the molding effect of HTPB/CL‐20 explosives. The propagation reliability, detonation velocity, mechanical sensitivity, thermal decomposition characteristics and thermal stability of the HTPB/CL‐20 explosives were also measured and analyzed. The results show that, when CL‐20 content is less than 91 wt.‐%, the charges with better molding effect were obtained easily. The critical diameter of HTPB/CL‐20 explosives is less than 1 mm, which exhibits good propagation reliability. When the density of HTPB/CL‐20 charge with 91 wt.‐% CL‐20 is 1.73 g cm−3, its detonation velocity can reach 8273 m s−1. Moreover, this kind of explosives has low mechanical sensitivity and good thermal stability.  相似文献   

20.
Detonation experiments were performed in a specially developed explosive device simulating a blasthole using charges of fine-grained and coarse-grained (granular) 30/70 TNT/ammonium nitrate mixtures of identical density 0.89 g/cm3 in steel shells with an inner diameter of 28 mm and a wall thickness of 3 mm at detonation velocities of 4.13 and 2.13 km/sec, respectively. Despite significant differences in detonation velocity (pressure), identical expansion of the charge shells was observed. On the other hand, numerical simulations of detonation propagation in the explosive device with the corresponding velocities ignoring the possibility of energy release behind the shock front show that the expansion of the charge shell is always greater in the case of a high-velocity regime. It is concluded that under the conditions simulating detonation propagation and the work of explosion products in a blasthole, effective additional energy release occurs behind the low-velocity (nonideal) detonation front. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 4, pp. 111–120, July–August, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号