首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon fiber/ABS composites with different acrylonitrile, butadiene, and styrene components were produced via extrusion/injection and long fiber thermoplastic (LFT)/injection molding processes, respectively. The effect of the components on fiber length distribution, tensile, flexural, impact, and dynamic mechanical properties of the composites was investigated. The properties of carbon fiber/ABS composites produced using 12 mm-long LFT pellets were markedly higher than those produced using extruded pellets made with 12 mm-long chopped carbon fibers. Uses of LFT pellets were preferable to enhancing the mechanical properties of carbon fiber/ABS composites. The tensile, flexural, and dynamic mechanical properties were increased in order of ABS750sw > ABS720 ≥ ABS780 > ABS740, whereas the impact strength was increased in order of ABS740 > ABS780 > ABS720 ≈ ABS750sw. Less carbon fiber damages and less carbon fiber length degradation upon LFT processing resulted in longer fiber length distribution and higher fiber aspect ratio in the composites with LFT pellets, indicating a beneficial reinforcing effect, which was responsible for the increased mechanical properties of ABS composites, particularly with ABS750sw. The results were agreed with each other, significantly depending on the A, B, and S components, being supported by fiber length distribution, fiber aspect ratio, and fracture surfaces.  相似文献   

2.
This article mainly investigated the length distributions of the alkali‐free short glass fibers in specimens and their effect on the mechanical and thermal properties of the composites. The results show that the initial length, addition level and feed way of the fibers have obvious effects on the length distributions of fibers in specimens, and thereby the mechanical and thermal properties of the composites. The main‐direction feed way has an intense shear action on the fibers in specimens. With the increase of the fiber content, the reinforcing effect of fibers on the tensile strength, flexural strength and flexural modulus of the composites is increased, while the impact strength is decreased first and then tends to be stable, and the strength factor (F) of the tensile strength to weld line is significantly reduced. The longer the fiber lengths in specimens are, the more obvious the reinforcing and toughening effects are. To some extent, with the increase of the fiber content, the storage modulus (E′) and loss modulus (E′′) of the specimens are increased, but the loss factor (Tan δ) is reduced. The effect of the fiber initial lengths on the heat‐degradation of composites is smaller than that of the fiber content. Meanwhile, adding fibers can improve the thermal stability of the composites, and this law is also confirmed by the heat deflection temperature (HDT) test. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40697.  相似文献   

3.
Long glass fiber–reinforced thermoplastic composites were prepared by a new process, in situ solid‐state polycondensation (INSITU SSP). In this process reinforcing continuous fibers were impregnated by the oligomer of PET melt, and then the impregnated continuous fibers were cut to a desired length (designated prepreg); finally, the prepreg was in situ polymerized in the solid state to form the high molecular weight matrix. SEM, FTIR spectra, short‐beam shear stress test, flexural strength test, impact strength test, and the intrinsic viscosity measurement were used to investigate the wetting and interfacial adhesion, the mechanical properties of the composite, and the molecular weight of matrix resin in the composite. The results showed that the molecular weight of PET in the matrix resin and mechanical properties could be adjusted by controlling the SSP time and that the high level of interfacial adhesion between reinforcing fibers and matrix resin could be achieved by this novel INSITU SSP process, which are attributed to the good wetting of reinforcing fibers with low molecular weight oligomer melt as the impregnation fluid, the in situ formation of chemical grafting of oligomer chains onto the reinforcing fiber surface, and the in situ formation of the high molecular weight PET chains in the interphase regions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3959–3965, 2004  相似文献   

4.
Summary: Long glass fiber reinforced PA6 (LGF/PA6) prepregs were prepared by impregnating PA6 oligomer melt into reinforcing glass fiber followed by subsequent solid‐state polymerization (SSP) to obtain LGF/PA6 composite pellets. A conventional injection‐molding machine suitable for short glass fiber reinforced composites was applied to the processing of the prepared composites, which reduced the fiber length in the final products. Mechanical properties, thermal property, and fiber length distribution of injection molding bars were investigated. Scanning electron microscopy (SEM) was used to observe the impact fracture surfaces and the surfaces of glass fiber after the SSP. It was found that the LGF/PA6 composites were of favorable mechanical properties, especially the impact strength, although the average length of glass fiber was rather short. By this novel process, the content of glass fiber in composite could be high up to 60 wt.‐% and the maximum level of heat distortion temperature (HDT) was close to the melting temperature of PA6. SEM images indicated the favorable interfacial properties between the glass fiber and matrix. The glass fiber surfaces were further observed by SEM after removing the matrix PA6 with a solvent, the results showed that PA6 macromolecules were grafted onto the surface. Furthermore, the grafting amount of PA6 was increased with SSP time.

SEM images of impact fracture surfaces of LGF/PA6 composites (left) and of glass fiber surfaces after removing PA6 with 5 h SSP (right).  相似文献   


5.
The mechanical properties of short-fiber-reinforced thermoplastic composites depend on the degree of interfacial bond strength between the fibers and polymer matrix. This interfacial bond strength can be increased by appropriate coupling agents. This study shows, for example, that an amino silane coupling agent improves the bond strength of nylon-aluminum fiber composites, but not polycarbonate-aluminum fiber composites. For cases where appropriate coupling agents are not available it is important to maintain as high a fiber aspect ratio as possible in a molded part. This study shows that a single screw compounder does less damage to glass or carbon fibers than a twin screw compounder under similar processing conditions when the polymer is in the form of pellets. When the polymer is supplied as a powder, satisfactory dry blends can be produced and the twin screw compounder does less damage to the fibers. In both cases, however, fibers initially 6 mm long are reduced to an average length less than 0.5 mm. The greatest degree of fiber size retention was observed when extrusion coated fiber pellets were used in the injection molding machine. The relationship between a fiber's tensile strength and the interfacial shear strength between a fiber and matrix yields a critical fiber aspect ratio below which the maximum reinforcing capability of the fibers are not being utilized. For the polymers investigated in this program, the critical aspect ratio for carbon fibers was found to be between 16 and 25 to 1. The polymers investigated include flame-retardant grades of acrylonitrile-butadiene-styrene (ABS) and poly(phenylene oxide)/polystyrene blend, nylon 6/6 and poly(phenylene sulfide).  相似文献   

6.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

7.
The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in‐plane compression, short‐beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60%, and commingled—48%, 48%, 49%, respectively) by using vacuum consolidation technique. To evaluate laminate quality in terms of fiber wet‐out at filament level, homogeneity of fiber/matrix distribution, and matrix/fiber bonding standard microscopic methods like optical microscopy and scanning electron microscopy (SEM) were used. Both commingled and prepreg glass fiber/PA6 composites (with Vf ∼ 48%) give mechanical properties such as compression strength (530–570 MPa), inter‐laminar shear strength (70–80 MPa), and transverse strength (80–90 MPa). By increasing small percentage in the fiber content show significant rise in compression strength, slight decrease in the ILSS and transverse strengths, whereas semipreg give very poor properties with the slight increase in fiber content. Overall comparison of mechanical properties indicates commingled glass fiber/PA6 composite shows much better performance compared with prepregs due to uniform distribution of fiber and matrix, better melt‐impregnation while processing, perfect alignment of glass fibers in the composite. This study proves again that the presence of voids and poor interface bonding between matrix/fiber leads to decrease in the mechanical properties. Fractographic characterization of post‐failure surfaces reveals information about the cause and sequence of failure. POLYM. COMPOS., 36:834–853, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
In this work, a novel melt mixing method and its corresponding mixing device are developed. The extensional/shear strength ratio of the device can be controlled by adjusting its eccentricity. The structure and working principle of the device are introduced in detail. Carbon fiber (CF)/polyamide 6 (PA6) composites are prepared via this novel mixing device. The influences of eccentricity and mixing time on the morphology, CF length, thermal, mechanical, and electrical properties of CF/PA6 composites are studied. Scanning electron microscopy results show that CFs uniformly disperse in the matrix and interfacial adhesion between CFs and PA6 is improved. It is observed that CF length and its distributions can be optimized by changing eccentricity. The maximum average fiber length is about 351 μm. Differential scanning calorimetry results exhibit that the Xc increases 6.5% when eccentricity is 2 mm. Mechanical test results show tensile strength and modulus increase first and then decrease with the increasing eccentricities or mixing time. Electrical property measurement shows an obvious increase when eccentricity is 2 mm due to good fiber dispersion and long fiber retention length. The experimental results indicate that the novel mixing method and its corresponding apparatus provide an environment-friendly and effective way to prepare polymer-based composites.  相似文献   

9.
In this study acrylonitrile‐butadiene‐styrene (ABS) terpolymer was reinforced with 3‐aminopropyltrimethoxysilane (APS)‐treated short glass fibers (SGFs). The effects of SGF concentration and extrusion process conditions, such as the screw speed and barrel temperature profile, on the mechanical properties of the composites were examined. Increasing the SGF concentration in the ABS matrix from 10 wt% to 30 wt% resulted in improved tensile strength, tensile modulus and flexural modulus, but drastically lowered the strain‐at‐break and the impact strength. The average fiber length decreased when the concentration of glass fibers increased. The increase in screw speed decreased the average fiber length, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength were affected negatively and the strain‐at‐break was affected positively. The increase in extrusion temperature decreased the fiber length degradation, and therefore the tensile strength, tensile modulus, flexural modulus, and impact strength increased. At higher temperatures the ABS matrix degraded and the mechanical strength of the composites decreased. To obtain a strong interaction at the interface, polyamide‐6 (PA6) at varying concentrations was introduced into the ABS/30 wt% SGF composite. The incorporation and increasing amount of PA6 in the composites broadened the fiber length distribution (FLD) owing to the low melt viscosity of PA6. Tensile strength, tensile modulus, flexural modulus, and impact strength values increased with an increase in the PA6 content of the ABS/PA6/SGF systems due to the improved adhesion at the interface, which was confirmed by the ratio of tensile strength to flexural strength as an adhesion parameter. These results were also supported by scanning electron micrographs of the ABS/PA6/SGF composites, which exhibited an improved adhesion between the SGFs and the ABS/PA6 matrix. POLYM. COMPOS. 26:745–755, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
A novel technique (pan‐milling mixing) was developed to control the morphology and thus enhance the mechanical properties of polypropylene/polyamide 6 (PP/PA6) systems. Through pan‐milling at ambient temperature, PP/PA6 pellets of particle size 2–4 mm can be effectively pulverized to well‐mixed micrometre fine powders in the solid state. During pan‐milling of mixtures of PP and PA6, the polymer molecules undergo chain scission and form copolymers that compatibilize the two polymers in situ. By press moulding the finely mixed PP/PA6 powder obtained at a temperature between the melting points of PA6 and PP (for example 200 °C), a blend can be obtained in which the PA6 powder, retained throughout the process in the solid state, is well dispersed in the PP matrix. The mechanical properties of the system are much better than that of PP/PA6 blends prepared by common twin screw extrusion mixing and injection moulding. Tensile strengths of the fine PA6 particle filled PP/PA6 (70/30) blend is 29.3 MPa, which is 6.1 MPa higher than that of a conventionally prepared PP/PA6 blend. The Izod notched impact strength of a fine PA6 particle‐filled PP/PA6 (70/30) blend is 6.34 kJ m?2, which is 1.72 kJ m?2 higher than that of a conventionally prepared PP/PA6 blend. Morphological analysis shows that the domain size of PA6 in the system is much smaller than that of the PP/PA6 blend, and can be controlled by the processing conditions such as temperature. © 2001 Society of Chemical Industry  相似文献   

11.
The reinforcing effect of resorcinol formaldehyde latex (RFL) coated short aramid fiber on an ester‐based thermoplastic polyurethane (TPU) was investigated on the basis of mechanical properties. Short fibers having different fiber length were used for the reinforcement. The exceptionally high Young's modulus and low strain modulus indicate the reinforcing effect of this fiber on to the TPU matrix. It has been observed that fibers of 3 mm length at 10 phr loading and 6 mm length even at a loading of 5 phr start to exhibit severe fibrillation: the longitudinal splitting of fiber having larger diameter into thinner fibrils during processing. Fibrillation favorably affects the mechanical bonding with the matrix because of the large surface area as well as surface irregularities provided by the fibrillated fiber. However, fibrillation adversely affects the fiber dispersion by enhancing the fiber aggregation. This leads to a greater disturbance in the strain hardening behavior of the TPU matrix and subsequently reducing the tensile strength and elongation at break especially at high fiber loading. Therefore, to control the degree of fibrillation a pre‐treatment has been applied on the aramid fiber surface with maleic anhydride‐grafted‐polybutadiene (PB‐g‐MA) prior to mixing it with the TPU matrix. A good quality of fiber dispersion with improved tensile strength and elongation at break has been achieved even with 6 mm short fiber at a loading of 10 phr with the treatment of only 5 phr of PB‐g‐MA. The tensile fractured surface morphological analyses of PB‐g‐MA coated fiber filled TPU composite strongly advocate these results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2205–2216, 2013  相似文献   

12.
The prepreg of continuous glass fiber reinforced poly(phenylene sulphide) (PPS) was prepared using the powder impregnation technique and cut into the pellets, in which the length of glass fibers was the same as the pellets. After injection molding, the mechanical properties were tested and the effects of the pellet length, fiber content, and thermal treatment on the mechanical properties at different temperatures were studied. It is found that the tensile strength and flexural strength of 6‐mm pellet sample are slightly higher than that of 3‐ and 12‐mm pellet samples. The tensile strength, flexural strength, and modulus decrease significantly with increasing the temperature. The notched Izod impact strength at 85ºC is higher than both at 25ºC and 205ºC. At 205ºC, the glass fiber reinforced PPS composites can still keep better mechanical properties. When the fiber content ranges from 0 to 50%, the mechanical properties increase with increasing the fiber contents at different temperatures, except the notched Izod impact strength do not further increase at 145 and 205ºC with raising the fiber content from 40 to 50%. Thermal treatment could improve the mechanical properties of the composites at higher serving temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The mechanical properties of hybrid reinforced rigid polyurethane (PU) foams were investigated with the reinforcing agent SiO2 and fibers. The effect of content of SiO2 and fibers and the effect of length of fibers on the properties of the PU composite foam were emphatically analyzed. The experiment results show that the tensile strength of the PU composite foam is optimal when the content of SiO2 and glass fiber is 20 and 7.8%, respectively. Furthermore, the reinforcing effect of glass fiber, Nylon‐66 fiber, and PAN‐matrix carbon fiber were compared and the results show that the tensile strength of the PU composite foam reinforced with 3–5% carbon fiber is optimal. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1493–1500, 2004  相似文献   

14.
Natural fibers, such as Flax, Sisal, Hibiscus Sabdariffa, and Grewia optiva (GO) possess good reinforcing capability when properly compounded with polymers. These fibers are relatively inexpensive, easily available from renewable resources, and possess favorable values of specific strength and specific modulus. The mechanical performance of natural fiber‐reinforced polymers (FRPs) is often limited owing to a weak fiber‐ matrix interface. In contrast, urea–formaldehyde (UF) resins are well known to have a strong adhesion to most cellulose‐containing materials. This article deals with the synthesis of short G. optiva fiber‐reinforced UF polymer matrix‐based composites. G. optiva fiber‐reinforced UF composites processed by compression molding have been studied by evaluating their mechanical, physical, and chemical properties. This work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength, and wear resistance of the UF matrix increase up to 30% fiber loading and then decreases for higher loading when fibers are incorporated into the polymer matrix. Morphological and thermal studies of the matrix, fiber, and short FRP composites have also been carried out. The swelling, moisture absorbance, chemical resistance, and water uptake behavior of these composites have also been carried out at different intervals. The results obtained lay emphasis on the utilization of these fibers, as potential reinforcing materials in bio‐based polymer composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
The results of this work relate to the use of co‐extrusion technology in the preparation of monocomposite pellets. The low‐melting polypropylene copolymer was used as a matrix material. The high strength polypropylene fibers were used as a fibrous reinforcement. Research confirms the possibility to produce the pellets with fibrous structure. The prepared composite material in the form of pellets was processed and shaped using the injection molding technology. Obtained samples were subjected to mechanical testing in the static tensile test and dynamic mechanical analysis. Research complements microscopic observation of scanning electron microscopy. The measurement results confirm the reinforcing effect of the fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41180.  相似文献   

16.
The preparation process from waste fibers to regenerated fibers is an environmental significance work. In this work, liquid chromatography/time-of-flight mass spectrometry, advanced polymer chromatography/multi-angle laser-light-scattering/refractive index detector, and two-dimensional wide-angle X-ray diffractometry were employed to characterize the polycaprolactam(PA6) fibers above oligomers composition and content, molecular weight and distribution, crystallization and orientation, and analyzing the changes in mechanical properties. The total content of oligomers in physical and chemical regenerated PA6 fiber is 2.084 wt% and 1.812 wt%, individually, which is higher than that in waste PA6 fiber. And the oligomer content of C1–C4 (cyclic monomer, cyclic dimer, cyclic trimer, and cyclic tetramer) in the regenerated PA6 fiber is higher than that of waste PA6 fiber. The regenerated PA6 fiber sample contains more low-molecular-weight substances, making it easier to form crystal nuclei and crystallize. During the dyeing process of the regenerated PA6 fiber, the γ crystal transformed into α crystal. The tensile strength of physical and chemical regenerated PA6 fiber is lower than that of waste PA6 fiber. And after dyeing, the oligomers content of regenerated PA6 fiber is significantly decreased, especially in C1–C4 oligomer. However, the crystalliniy and orientation of regenerated PA6 fibers were improved, which also leads to the fracture strength increased by about 20% compared to undyed fibers.  相似文献   

17.
The results of the investigations of the relations between structure, physical and usage properties of polyamide 6 (PA6) reinforced with multiwall carbon nanotubes (MWNTs) are presented. A method of in situ anionic bulk polymerization of ε‐caprolactam in the presence of MWNTs was used for the preparation of reinforced PA6. The polymerization product was crushed, and the pellets of PA6 and PA6/MWNTs composites were injection molded to produce the standard test specimens for various measurements. The surface morphology (SEM), thermal (DSC, TGA, DMTA), and mechanical properties (tensile strength, Charpy's notched impact strength) of these materials were examined. Some differences between our specimens and those obtained by hydrolytic polymerization of ε‐caprolactam (CL) were found. It was found that a small amount of carbon nanotube decreases the crystallinity degree of PA6 matrix in the composites. The thermal stability was higher than that for neat PA6. DMTA results showed that the magnitudes of the storage modulus are higher for the PA6/MWNTs composites than for the unmodified PA6 in the temperature range between ?90 and 200°C. The tensile strength and tensile modulus are higher compared with the neat PA6. The elongation at break showed no noticeable change in the range of MWNTs loading considered, while the Charpy's notched impact strength slightly decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
通过高速共混包覆法和熔融纺丝法制备出聚酰胺6(PA6)-LiCl共混复合纤维,研究了不同含量的LiCl对PA6纤维的结构和性能的影响。差示扫描量热分析、傅里叶变换红外光谱分析、热重分析、纤度及力学性能测试等的结果表明:LiCl中Li+能打开PA6的氢键,并与酰胺基团产生比氢键作用力更强的络合作用,降低了PA6分子链的规整性,从而有利于纤维的热牵伸,在降低纤度的同时提高力学性能。当LiCl质量分数为0.5%时,PA6-LiCl共混纤维的可拉伸倍数最高可至4.8倍,断裂强度为5.3 cN/dtex,断裂伸长率为5.8%,较未加LiCl的样品的断裂强度提高了112%,断裂伸长率降低了74.6%,综合力学性能最佳。  相似文献   

19.
The mechanical and fracture properties of injection molded short glass fiber)/short carbon fiber reinforced polyamide 6 (PA 6) hybrid composites were studied. The short fiber composites of PA 6 glass fiber, carbon fiber, and the hybrid blend were injection molded using a conventional machine whereas the two types of sandwich skin–core hybrids were coinjection molded. The fiber volume fraction for all formulations was fixed at 0.07. The overall composite density, volume, and weight fraction for each formulation was calculated after composite pyrolysis in a furnace at 600°C under nitrogen atmosphere. The tensile, flexural, and single‐edge notch‐bending tests were performed on all formulations. Microstructural characterizations involved the determination of thermal properties, skin–core thickness, and fiber length distributions. The carbon fiber/PA 6 (CF/PA 6) formulation exhibits the highest values for most tests. The sandwich skin‐core hybrid composites exhibit values lower than the CF/PA 6 and hybrid composite blends for the mechanical and fracture tests. The behaviors of all composite formulations are explained in terms of mechanical and fracture properties and its proportion to the composite strength, fiber orientation, interfacial bonding between fibers and matrix, nucleating ability of carbon fibers, and the effects of the skin and core structures. Failure mechanisms of both the matrix and the composites, assessed by fractographic studies in a scanning electron microscope, are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 957–967, 2005  相似文献   

20.
The properties of 30 wt% short glass fiber (SGF) reinforced acrylonitrile-butadiene-styrene (ABS) terpolymer and polyamide 6 (PA6) blends prepared with extrusion were studied using the interfacial adhesion approach. Work of adhesion and interlaminar shear strength values were calculated respectively from experimentally determined interfacial tensions and short beam flexural tests. The adhesion capacities of glass fibers with different surface treatments of organosilanes were evaluated. Among the different silanes tested, γ-aminopropyltrimethoxysilane (APS) was found to be the best coupling agent for the glass fibers, possibly, because of its chemical compatibility with PA6. Tensile test results indicated that increasing amount of PA6 in the polymer matrix improved the strength and stiffness of the composites due to a strong acid–base interaction at the interface. Incorporation of PA6 to the SGF reinforced ABS reduced the melt viscosity, broadened the fiber length distributions and increased the toughness of the composites. Fractographic analysis showed that the incorporation of PA6 enhanced the interactions between glass fibers and the polymeric matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号