首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过静电纺丝技术制备了CS/PVP质量比分别为0/100、10/90、20/80、30/70、40/60复合纳米纤维膜.通过扫描电镜、红外光谱及X射线衍射仪对纳米纤维膜进行表征,利用电子强力机对纤维膜断裂强度进行测试.结果表明:CS/PVP质量比从0/100变化到30/70时,纤维形态良好,平均直径随着壳聚糖含量的增加而逐渐减小;质量比达到40/60时,纤维中有大量珠串,均匀性变差.FT-IR和XRD图谱表明,复合纳米纤维膜中CS与PVP存在相互作用,分子之间形成了氢键;复合纳米纤维膜的断裂强度随着CS含量的增加而增大,当壳聚糖含量达到40%时,其断裂强度为19.87MPa.  相似文献   

2.
凝固浴对蓄热调温聚丙烯腈纤维性能的影响   总被引:1,自引:1,他引:0  
以聚酰胺石蜡相变微胶囊(MEPCM)为相变材料,硫氰酸钠(NaSCN)水溶液为溶剂,通过湿法纺丝工艺制备MEPCM质量分数为16.7%的蓄热调温聚丙烯腈纤维,考察了凝固浴中NaSCN质量分数对纤维性能的影响。随着NaSCN质量分数的增大,纤维的线密度增大,断裂强度、热收缩率和沸水收缩率下降,断裂伸长率和钩接强度先增大后减小。通过实验分析确定最佳NaSCN质量分数为10%,在此条件下制备的蓄热调温聚丙烯腈纤维强度为1.35cN/dtex,热焓值为26.0J/g,MEPCM在纤维中的热效率达到78.4%,具有良好的物理机械性能和较好的蓄热调温性能。  相似文献   

3.
以P(PEGA-HAM)/PEG固-固相变粒子为相变材料(PCM)、以PP-g-PEGA为增容剂与成纤聚合物(PP)按不同比例混合,通过熔融纺丝工艺制备不同相变材料含量的蓄热调温纤维。IR测试分析确定了固-固型相变粒子的化学结构以及三元共混体系的化学组成;通过DSC、纤维强力仪以及SEM表征了蓄热纤维的热性能、力学性能以及外观形态;利用XRD和毛细管流变仪表征了三元共混体系的结晶性能和流变性能。结果表明,当PCM为12%、PP-g-PEGA为3%时,调温纤维的相变焓为12.17J/g,断裂强度为4.86cN/dtex,纤维表面光滑完整;P(PEGA-HAM)/PEG含量的增多破坏了PP基体中α晶的形成,使得PP的结晶度降低,三元共混体系的剪切黏度随着PCM的增多呈现先减小后增大的流变行为,剪切黏度随着温度的升高而降低。  相似文献   

4.
以鸡毛为原料通过酸碱法和氧化法结合提取羽毛角蛋白(FK),再将角蛋白与海藻酸钠(SA)混合制备SA/FK复合溶液,经纺丝成型制备出SA/FK复合纤维,用FT-IR、XRD、SEM等方法对纤维中分子间作用力以及纤维的力学性能和表面形貌进行了表征。结果表明,溶液黏度随pH升高而降低;SA/FK复合纤维中分子间氢键作用随pH升高而下降;凝固浴质量分数为5%时,SA/FK复合纤维断裂强度最高,为1.96 cN/dtex;纤维表面具有数目较多且分布不均的沟槽结构,此结构有利于提高纤维的吸湿性和透气性。  相似文献   

5.
以废弃羊毛为原料,采用酸碱法提取羊毛角蛋白,湿法纺丝制备海藻酸钠/羊毛角蛋白(SA/WK)复合纤维,研究了 SA/WK复合体系中的氢键,以及氢键对其结构和性能的影响.通过FT-IR、SEM对复合纤维化学结构和微观形态结构进行表征,对其流变性能、结晶性能和力学性能进行了研究.结果表明,SA/WK纤维中存在分子内氢键和分子...  相似文献   

6.
将可以完全降解的生物质材料壳聚糖(CS)与明胶(GA)进行共混,制备CS/GA复合溶液,对复合溶液的表观黏度进行了测试。通过湿法纺丝制备CS/GA复合纤维,研究了复合纤维的基本性能。在共混体系中,壳聚糖分子与明胶分子之间的相互作用,使得复合溶液以及复合纤维的性能相比较纯壳聚糖有了明显改变。实验结果表明,CS/GA复合溶液的表观黏度与GA含量有关,GA逐渐增加时,复合溶液的表观黏度出现先增后减的趋势。CS/GA复合纤维的力学性能相比纯CS纤维有显著提升,当GA的质量分数为15%时,CS/GA复合纤维的力学断裂强度达到3.58 cN/dtex。扫描电镜观察CS/GA复合纤维表面光滑。  相似文献   

7.
以聚丙烯腈、N,N-二甲基甲酰胺、偏钨酸铵(AMT)为原料,采用静电纺丝法制备了碳化钨/碳(WC/C)复合纤维,对其微观形貌以及析氢活性进行了表征。结果表明,纺丝液中不同偏钨酸铵含量情况下都可以获得连续的纺出纤维,但热处理后的WC/C复合纤维长度随着偏钨酸铵含量的增加而减小。随着纺丝液中偏钨酸铵含量的增加,WC/C复合纤维材料的过电势减小,电化学活性面积增大,AMT-1.2的过电势为162 mV,表明WC赋予WC/C复合纤维良好的催化活性。随着复合纤维中WC增加,其塔费尔斜率不断增大,在一定程度上降低了析氢电化学反应速度,但赋予其良好的耐腐蚀性能。  相似文献   

8.
通过湿法纺丝技术制备了海藻/磷虾蛋白复合纤维(SA/AKP),并通过FT-IR、SEM、POM对其化学结构和微观形态结构进行表征,测试了复合纤维在成形过程中的溶胀性能和成品纤维的力学性能。结果表明,磷虾蛋白(AKP)能较好地分散在海藻酸钠(SA)基质中,SA/AKP复合纤维的截面呈圆形和椭圆形形貌,纤维的表面存在粗糙的沟槽结构;复合纤维的溶胀性能随着基质中蛋白质含量的增加而增加,当AKP加入量为30%时,溶胀度达356.3%;纤维的最高断裂强度为2.32cN/dtex,最大断裂伸长率为16.14%。  相似文献   

9.
采用界面聚合法合成石蜡@TiO_2/CNTs复合相变材料,通过扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)和X射线衍射(XRD)分析了复合材料的微观形貌、化学组成和晶体结构;采用差示扫描量热仪(DSC)、热重分析仪(TGA)及导热系数仪分析了复合材料的相变性能、热稳定性和热导率。结果表明:石蜡@TiO_2/CNTs复合材料由具有核-壳结构的石蜡@TiO_2微胶囊与碳纳米管(CNTs)复合而成,碳纳米管通过氢键吸附在微胶囊的表面;复合材料的熔点及凝固点比纯石蜡高,碳纳米管质量分数为1%的复合材料的相变潜热为59.57 J/g,且随着碳纳米管质量分数的增大而减小,复合材料在170℃以下具有良好的热稳定性,热导率显著提高。  相似文献   

10.
通过将多壁纳米碳管分散到一种热塑性高分子材料PVA-co-PE中,再以该材料为分散相,通过对材料流变性、界面性能以及成型条件的控制,使热塑性高分子材料在纤维素酯基体中分散、诱导取向和聚集,原位组装成纳米纤维复合材料。采用环境友好型溶剂丙酮将纤维素酯基体除去后,可制备出连续的、束状MWCNTs/PVA-co-PE复合纳米纤维材料。通过扫描电子显微镜对制备的纯PVA-co-PE纳米纤维与质量分数不同的MWCNTs/PVA-co-PE复合纳米纤维的形态结构进行表征,并利用DSC、TG等分析MWCNTs/PVA-co-PE复合纳米纤维的Tm、热降解等性能。  相似文献   

11.
以4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)为反应前驱体,3,3’-二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,制备MBMI-BBA-BBE(MBAE)聚合物基体。采用聚醚砜(PES)和酸化修饰的多壁碳纳米管(MWCNTs)为改性剂,通过原位聚合法制备MWCNTs/PES-MBAE复合材料。研究复合材料的力学性能和介电性能。MWCNTs/PES-MBAE复合材料的力学性能采用冲击强度和弯曲强度进行表征,结果表明:冲击强度和弯曲强度均随着MWCNTs含量的升高呈现先增大后减小的趋势,且在质量分数为0. 02%时达到最高,分别提升了74%和53%。复合材料介电常数随MWCNTs含量的升高而降低,在低频区变化不大,当频率大于104Hz时下降幅度增大;介电损耗略有升高,在频率小于104Hz仍为千分位,可作为常规绝缘材料使用。  相似文献   

12.
为提高相变纳胶囊在静电纺纤维上的负载量,采用相反转温度(PIT)乳化和自由基聚合技术制备了交联聚甲基丙烯酸甲酯(PMMA)/正十八烷纳胶囊,将其添加到聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)纺丝液中,通过静电纺丝技术分别制备了PVDF和PAN复合纳米纤维,并使用SEM、TEM、DSC和TG等方式对2种纳米纤维进行表征。结果表明:2种复合纤维均平直光滑,纺锤状较少;PVDF复合纤维平均直径在100~300 nm之间,PAN复合纤维平均直径在400~800 nm之间,纤维直径随胶囊加入量的增加而增大;PAN纤维负载相变纳胶囊的能力优于PVDF纤维,热性能更好;纳胶囊添加质量分数为9%的PAN相变纤维具有较为优良的热焓值和热稳定性,其结晶焓为22.55 J/g。  相似文献   

13.
为改善PET纤维的抗静电性能,以工业级多壁碳纳米管(MWCNTs)为导电填料,纤维级聚对苯二甲酸乙二醇酯(PET)为基体,通过熔融纺丝工艺制备复合纤维,研究不同MWCNT添加量和不同纺丝工艺对复合纤维的热学性能、导电性能以及MWCNTs在PET基体中分散性的影响。结果表明:采用全造粒法制备复合纤维,MWCNT质量分数达1.5%时仍具有良好的分散性;与纯PET纤维相比,母粒法复合纤维的结晶温度显著增加,MWCNT质量分数为0.5%时,结晶温度提高7℃左右;MWCNT的加入能提高复合纤维的热稳定性;MWCNT/PET复合纤维的导电渗流阈值在1.5%~2.0%之间,MWCNT质量分数为2.0%时复合纤维的体积电阻率达到10~7Ω·cm。  相似文献   

14.
为改善热致相分离(TIPS)聚偏氟乙烯(PVDF)膜的性能,以邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二辛酯(DOP)组成混合稀释剂,以纳米SiO_2、石墨烯为添加改性剂,采用TIPS法制备了PVDF中空纤维杂化膜.通过扫描电子显微镜(SEM)观察所得膜形貌,并对其渗透性能及机械性能进行测试表征,研究了纳米SiO_2、石墨烯添加量对PVDF中空纤维膜结构和性能的影响.结果表明:所得膜为均质海绵状孔结构,膜外表面较光滑,内表面粗糙且疏松多孔,随纳米SiO_2添加量的增加膜内外表面水接触角均增大,膜纯水通量先减小后增大,膜孔隙率均大于70%,膜断裂强度和断裂伸长率均先增大后减小;同时添加质量分数分别为3%和0.5%的纳米SiO_2和石墨烯,石墨烯以片层形式均匀分散在膜内,膜纯水通量可达418 L/(m~2·h),相较于原膜断裂强度提高12.6%,断裂伸长率提高89.2%.  相似文献   

15.
通过静电纺丝的方法制备以月桂酸和硬脂酸二元低共熔物(LA-SA)为固-液相变材料,聚丙烯腈(PAN)为基体的超细纤维。研究最佳静电纺PAN纤维的纺丝工艺参数,纺丝溶液中不同LA-SA含量对复合纤维的形貌结构影响。确定最佳静电纺PAN纳米纤维的工艺参数(纺丝电压15KV,接收距离20cm,纺丝液流速1ml/h)。SEM观察表明:随LA-SA含量的增加,复合纤维的平均直径逐渐增大;当复合纤维中LA-SA含量较高时,纤维表面变得不光滑,并呈现褶皱的形貌特征。  相似文献   

16.
以电熔镁砂和白刚玉为镁铝尖晶石陶瓷基体原料,以氯化钾、氟化钾复合盐为相变材料,用原位反应烧结法制备熔盐/尖晶石复合高温相变储能材料,研究烧结温度、熔盐含量对熔盐/尖晶石相变储能材料性能的影响。采用XRD和SEM对材料进行表征,通过DSC分析测定材料相变潜热,结果表明,烧结温度为1 000℃和熔盐含量为40%时,所制备的储能材料的相变潜热为70.98 kJ/kg,蓄热密度为240 kJ/kg(ΔT=100℃),储热性能较好。  相似文献   

17.
硬脂酸-月桂酸二元复合相变材料   总被引:2,自引:1,他引:1  
以硬脂酸(SA)、月桂酸(LA)为原料,通过熔融共混法制备了二元脂肪酸相变材料。采用红外光谱(FTIR)、偏光显微镜(POM)、差示扫描量热仪(DSC)及温度记录仪分别表征了共混相变材料的结构、结晶形态、相变温度和焓值以及保温性能。FTIR表明共混相变材料中硬脂酸与月桂酸通过分子间作用力结合在一起;POM表明SA与LA在共混物中形成共晶结构,且随SA/LA质量配比的减小,结晶半径减小;DSC表明共混相变材料的结晶焓达到200J/g,随SA/LA质量配比的减小结晶温度先降低后升高,表现出低共熔物特征;步冷曲线表明,随SA/LA质量配比的减小,平台温度先降低后升高,且当SA/LA质量比为1/2时,温度平台为30.9℃,保温时间为25min,约为纯硬脂酸或月桂酸保温时间的2倍。  相似文献   

18.
通过立方体抗压试验分别研究了再生粗骨料取代率(RC)和玄武岩纤维体积掺量(RB)对玄武岩纤维增强再生混凝土(BFRRC)试块的抗压强度(fcu)、割线模量(Ec)的影响规律,并对BFRRC的峰值应变进行了分析.研究表明:RB对BFRRC试块的抗压强度起到先增大后减小的作用;Ec随着RC的增大呈现下降的趋势;Ec随着RB的增大呈现先增大后减小的趋势;峰值应变随着RC的增大呈现先增大后减小的趋势;玄武岩纤维的掺入能明显增大试件的峰值应变.本研究发现BFRRC的最佳RB在0.05%~0.10%之间.  相似文献   

19.
以甘露醇为母体,利用熔融共混法制备甘露醇/SiO_2复合相变材料。采用SEM、FT-IR、XRD、DSC和TDC等对复合相变材料的结构和热性能进行了表征。实验结果表明,甘露醇和支撑体二氧化硅之间仅存在氢键作用,没有其他化学作用;通过对质量比m(SiO_2)/m(mannitol)=2(S/M-2)复合材料循环测试实验表明,其具有良好的稳定性,S/M-2材料与甘露醇热扩散系数测试结果表明,在40?C固态时复合相变材料的热扩散系数提高了近8倍;在相变温度以上,200?C时热扩散系数也提高了20%。  相似文献   

20.
为了制备柔韧性好、弹性优良的低熔点复合纤维,以低熔点热塑性聚醚酯弹性体(LMTPEE)为皮层、聚对苯二甲酸乙二醇酯(PET)为芯层通过熔融纺丝法制备了偏心复合纤维。探讨了复合比对LMTPEE/PET偏心复合纤维横截面、结晶性能、取向性能、拉伸性能、热收缩性能、卷曲性能等的影响,以及热处理温度对复合纤维的卷曲形貌和黏结性能的影响。结果表明:不同复合比的复合纤维横截面均有稳定的偏心结构;随着复合比(皮与芯的体积比)从40∶60改变到50∶50、60∶40,复合纤维的断裂伸长率和干热收缩率呈现增大的趋势,断裂强度、声速值、熔融焓和结晶度均逐渐减小。复合比为60∶40的LMTPEE/PET偏心复合纤维在热处理温度140℃、热处理时间10 min时,具有较好的卷曲性能;热处理温度高于170℃、热处理时间10 min时,纤维间发生黏结。该结果可为低熔点自卷曲纤维的制备和应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号