首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischemic stroke is one of the leading causes of death and permanent disability in adults. Recently, we found that light alcohol consumption (LAC) suppresses post-ischemic inflammatory response, which plays an important role in ischemic brain damage. Our goal was to determine the role of peroxisome proliferator-activated receptor-gamma (PPARγ) in the anti-inflammatory effect of LAC against transient focal cerebral ischemia. In in vivo study, male C57BL/6J wild type (WT) and endothelial-specific conditional PPARγ knockout mice were gavage fed with 0.7 g/kg/day ethanol or volume-matched water daily for 8 weeks. From the 7th week, 3 mg/kg/day GW9662 (a selective PPARγ antagonist) was intraperitoneally given for two weeks. Cerebral ischemia/reperfusion (I/R) injury and expression of manganese superoxide dismutase (MnSOD) and adhesion molecules, neutrophil infiltration, and microglial activation in the cerebral cortex before and following a 90 min unilateral middle cerebral artery occlusion (MCAO)/24 h reperfusion were evaluated. In in vitro study, the impact of chronic alcohol exposure on expression of PPARγ and MnSOD in C57BL/6J mouse brain microvascular endothelial cells (MBMVECs) was measured. PPARγ and MnSOD were significantly upregulated in the cerebral cortex of ethanol-fed WT mice and low-concentration ethanol-exposed C57BL/6J MBMVECs. GW9662 significantly inhibited alcohol-induced upregulation of MnSOD. Eight-week ethanol feeding significantly reduced cerebral I/R injury and alleviated the post-ischemic inflammatory response (upregulation of intercellular adhesion molecule-1 (ICAM-1) and E-selectin, microglial activation, and neutrophil infiltration). Treatment with GW9662 and endothelial-specific conditional knockout of PPARγ did not alter cerebral I/R injury and the inflammatory response in the control mice but abolish the neuroprotective effect in ethanol-fed mice. In addition, GW9662 and endothelial-specific conditional knockout of PPARγ diminished the inhibitory effect of LAC on the post-ischemic expression of adhesion molecules and neutrophil infiltration. Our findings suggest that LAC may protect against cerebral I/R injury by suppressing the post-ischemic inflammation via activation of PPARγ.  相似文献   

2.
The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2caflox/flox transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2caflox/flox; Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2caflox/flox; Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2caflox/flox mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases.  相似文献   

3.
Although inflammation and fibrosis, which are key mechanisms of chronic kidney disease, are associated with mitochondrial damage, little is known about the effects of mitochondrial damage on the collecting duct in renal inflammation and fibrosis. To generate collecting duct-specific mitochondrial injury mouse models, CR6-interacting factor-1 (CRIF1) flox/flox mice were bred with Hoxb7-Cre mice. We evaluated the phenotype of these mice. To evaluate the effects on unilateral ureteral obstruction (UUO)-induced renal injury, we divided the mice into the following four groups: a CRIF1flox/flox (wild-type (WT)) group, a CRIF1flox/flox-Hob7 Cre (CRIF1-KO) group, a WT-UUO group, and a CRIF1-KO UUO group. We evaluated the blood and urine chemistries, inflammatory and fibrosis markers, light microscopy, and electron microscopy of the kidneys. The inhibition of Crif1 mRNA in mIMCD cells reduced oxygen consumption and membrane potential. No significant differences in blood and urine chemistries were observed between WT and CRIF1-KO mice. In UUO mice, monocyte chemoattractant protein-1 and osteopontin expression, number of F4/80 positive cells, transforming growth factor-β and α-smooth muscle actin staining, and Masson’s trichrome staining were significantly higher in the kidneys of CRIF1-KO mice compared with the kidneys of WT mice. In sham mice, urinary 8-hydroxydeoxyguanosine (8-OHDG) was higher in CRIF1-KO mice than in WT mice. Moreover, CRIF1-KO sham mice had increased 8-OHDG-positive cell recruitment compared with WT-sham mice. CRIF1-KO-UUO kidneys had increased recruitment of 8-OHDG-positive cells compared with WT-UUO kidneys. In conclusion, collecting duct-specific mitochondrial injury increased oxidative stress. Oxidative stress associated with mitochondrial damage may aggravate UUO-induced renal injury.  相似文献   

4.
5.
(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12−/− (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, β and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.  相似文献   

6.
Advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE) are implicated in inflammatory reactions and vascular complications in diabetes. Signaling pathways downstream of RAGE are involved in NF-κB activation. In this study, we examined whether ethanol extracts of Saururus chinensis (Lour.) Baill. (SE) could affect RAGE signaling and vascular relaxation in streptozotocin (STZ)-induced diabetic rats. Treatment with SE inhibited AGEs-modified bovine serum albumin (AGEs-BSA)-elicited activation of NF-κB and could compete with AGEs-BSA binding to RAGE in a dose-dependent manner. Tumor necrosis factor-α (TNF-α) secretion induced by lipopolysaccharide (LPS)—a RAGE ligand—was also reduced by SE treatment in wild-type Ager+/+ mice as well as in cultured peritoneal macrophages from Ager+/+ mice but not in Ager−/− mice. SE administration significantly ameliorated diabetes-related dysregulation of acetylcholine-mediated vascular relaxation in STZ-induced diabetic rats. These results suggest that SE would inhibit RAGE signaling and would be useful for the improvement of vascular endothelial dysfunction in diabetes.  相似文献   

7.
8.
Endocannabinoid system activity declines with age in the hippocampus, along with the density of the cannabinoid receptor type-1 (CB1). This process might contribute to brain ageing, as previous studies showed that the constitutive deletion of the CB1 receptor in mice leads to early onset of memory deficits and histological signs of ageing in the hippocampus including enhanced pro-inflammatory glial activity and reduced neurogenesis. Here we asked whether the CB1 receptor exerts its activity locally, directly influencing hippocampal ageing or indirectly, accelerating systemic ageing. Thus, we deleted the CB1 receptor site-specifically in the hippocampus of 2-month-old CB1flox/flox mice using stereotaxic injections of rAAV-Cre-Venus viruses and assessed their social recognition memory four months later. Mice with hippocampus-specific deletion of the CB1 receptor displayed a memory impairment, similarly as observed in constitutive knockouts at the same age. We next analysed neuroinflammatory changes in the hippocampus, neuronal density and cell proliferation. Site-specific mutant mice had enhanced glial cell activity, up-regulated levels of TNFα in the hippocampus and decreased cell proliferation, specifically in the subgranular zone of the dentate gyrus. Our data indicate that a local activity of the CB1 receptor in the hippocampus is required to maintain neurogenesis and to prevent neuroinflammation and cognitive decline.  相似文献   

9.
10.
Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200−/− mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200−/− mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.  相似文献   

11.
Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)−/− mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH−/− mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH−/− mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH−/− mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH−/− mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH−/− mice. Finally, FAAH−/−-mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation.  相似文献   

12.
Alcohol use is a contributor in the premature deaths of approximately 3 million people annually. Among the risk factors for alcohol misuse is circadian rhythm disruption; however, this connection remains poorly understood. Inhibition of the circadian nuclear receptor REV-ERBα is known to disrupt molecular feedback loops integral to daily oscillations, and impact diurnal fluctuations in the expression of proteins required for reward-related neurotransmission. However, the role of REV-ERBα in alcohol and substance use-related phenotypes is unknown. Herein, we used a Rev-erbα knockout mouse line and ethanol two-bottle choice preference testing to show that disruption of Rev-erbα reduces ethanol preference in male and female mice. Rev-erbα null mice showed the lowest ethanol preference in a two-bottle choice test across all genotypes, whereas there were no ethanol preference differences between heterozygotes and wildtypes. In a separate experiment, alcohol-consuming wildtype C57Bl/6N mice were administered the REV-ERBα/β inhibitor SR8278 (25 mg/kg or 50 mg/kg) for 7 days and alcohol preference was evaluated daily. No differences in alcohol preference were observed between the treatment and vehicle groups. Our data provides evidence that genetic variation in REV-ERBα may contribute to differences in alcohol drinking.  相似文献   

13.
(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/−), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7–JNK pathway has a role in adult neurogenic activity.  相似文献   

14.
Acute respiratory distress syndrome (ARDS) consists of uncontrolled inflammation that causes hypoxemia and reduced lung compliance. Since it is a complex process, not all details have been elucidated yet. In a well-controlled experimental murine model of lipopolysaccharide (LPS)-induced ARDS, the activity and viability of macrophages and neutrophils dictate the beginning and end phases of lung inflammation. C-C chemokine receptor type 2 (CCR2) is a critical chemokine receptor that mediates monocyte/macrophage activation and recruitment to the tissues. Here, we used CCR2-deficient mice to explore mechanisms that control lung inflammation in LPS-induced ARDS. CCR2−/− mice presented higher total numbers of pulmonary leukocytes at the peak of inflammation as compared to CCR2+/+ mice, mainly by enhanced influx of neutrophils, whereas we observed two to six-fold lower monocyte or interstitial macrophage numbers in the CCR2−/−. Nevertheless, the time needed to control the inflammation was comparable between CCR2+/+ and CCR2−/−. Interestingly, CCR2−/− mice presented higher numbers and increased proliferative rates of alveolar macrophages from day 3, with a more pronounced M2 profile, associated with transforming growth factor (TGF)-β and C-C chemokine ligand (CCL)22 production, decreased inducible nitric oxide synthase (Nos2), interleukin (IL)-1β and IL-12b mRNA expression and increased mannose receptor type 1 (Mrc1) mRNA and CD206 protein expression. Depletion of alveolar macrophages significantly delayed recovery from the inflammatory insult. Thus, our work shows that the lower number of infiltrating monocytes in CCR2−/− is partially compensated by increased proliferation of resident alveolar macrophages during the inflammation control of experimental ARDS.  相似文献   

15.
Type I interferons (IFNs) are important enhancers of immune responses which are downregulated in human cancers, including skin cancer. Solar ultraviolet (UV) B radiation is a proven environmental carcinogen, and its exposure contributes to the high prevalence of skin cancer. The carcinogenic effects of UV light can be attributed to the formation of cyclobutane pyrimidine dimers (CPD) and errors in the repair and replication of DNA. Treatment with a single dose of UVB (100 mJ/cm2) upregulated IFNα and IFNβ in the skin of C57BL/6 mice. IFNα and IFNβ were predominantly produced by CD11b+ cells. In mice lacking the type I IFN receptor 1 (IFNAR1), the repair of CPD following cutaneous exposure to a single dose of UVB (100 mJ/cm2) was decreased. UVB induced the expression of the DNA repair gene xeroderma pigmentosum A (XPA) in wild-type (WT) mice. In contrast, such treatment in IFNAR1 (IFNAR1-/-) mice downregulated XPA. A local UVB regimen consisting of UVB radiation (150 mJ/cm2) for 4 days followed by sensitization with hapten 2,4, dinitrofluorobenzene (DNFB) resulted in significant suppression of immune responses in both WT and IFNAR1-/- mice. However, there were significantly higher CD4+CD25+Foxp3+ regulatory T-cells in the draining lymph nodes of IFNAR1-/- mice in comparison to WT mice. Overall, our studies reveal a previously unknown action of type I IFNs in the repair of photodamage and the prevention of UVB-induced immune suppression.  相似文献   

16.
Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1−/− (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1−/− and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.  相似文献   

17.
The inhibition of Glycogen Synthase Kinase 3 β (GSK3β) by Ser9 phosphorylation affects many physiological processes, including the immune response. However, the consequences of GSK3β inhibition by alternative Ser389 phosphorylation remain poorly characterized. Here we have examined neuroinflammation in GSK3β Ser389 knock-in (KI) mice, in which the phosphorylation of Ser389 GSK3β is impaired. The number of activated microglia/infiltrated macrophages, astrocytes, and infiltrated neutrophils was significantly higher in these animals compared to C57BL/6J wild-type (WT) counterparts, which suggests that the failure to inactivate GSK3β by Ser389 phosphorylation results in sustained low-grade neuroinflammation. Moreover, glial cell activation and brain infiltration of immune cells in response to lipopolysaccharide (LPS) failed in GSK3β Ser389 KI mice. Such effects were brain-specific, as peripheral immunity was not similarly affected. Additionally, phosphorylation of the IkB kinase complex (IKK) in response to LPS failed in GSK3β Ser389 KI mice, while STAT3 phosphorylation was fully conserved, suggesting that the NF-κB signaling pathway is specifically affected by this GSK3β regulatory pathway. Overall, our findings indicate that GSK3β inactivation by Ser389 phosphorylation controls the brain inflammatory response, raising the need to evaluate its role in the progression of neuroinflammatory pathologies.  相似文献   

18.
19.
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.  相似文献   

20.
Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer’s disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-β (Aβ) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aβs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号