首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Near-field antenna measurements combined with a near-field far-field transformation are an established antenna characterization technique. The approach avoids far-field measurements and offers a wide area of post-processing possibilities including radiation pattern determination and diagnostic methods. In this paper, a near-field far-field transformation algorithm employing plane wave expansion is presented and applied to the case of spherical near-field measurements. Compared to existing algorithms, this approach exploits the benefits of diagonalized translation operators, known from fast multipole methods. Due to the plane wave based field representation, a probe correction, using directly the probe's far-field pattern can easily be integrated into the transformation. Hence, it is possible to perform a full probe correction for arbitrary field probes with almost no additional effort. In contrast to other plane wave techniques, like holographic projections, which are suitable for highly directive antennas, the presented approach is applicable for arbitrary radiating structures. Major advantages are low computational effort with respect to the coupling matrix elements owing to the use of diagonalized translation operators and the efficient correction of arbitrary field probes. Also, irregular measurement grids can be handled with little additional effort.  相似文献   

2.
A near-field to far-field transformation based on the antenna representation by equivalent magnetic current (EMC) sources has been proposed and validated experimentally on large high-directivity antenna arrays. In this paper, the use of EMC is extended to the diagnostics of low-directivity printed antennas. The limitation of the near-field to far-field transformation applied to EMC models of low-directivity antennas, caused by the finite dimensions of the antenna ground plane, is demonstrated. A method to partially overcome this limitation by including the contribution of diffracted rays is implemented, and its effectiveness is demonstrated with antenna prototypes. It is shown that the agreement between the far-field patterns measured in an anechoic chamber and the patterns computed from the EMC model obtained from the near-field measurements is significantly improved upon, within a sector of ±90° with respect to the antenna boresight in the E plane. The influence of the near-field sampling density and topology of the EMC model on the accuracy of the predicted far-field pattern is examined  相似文献   

3.
天线的远场对于研究天线辐射特性具有重大意义,近场测量技术因其能够避免直接测量远场而得到广泛应用,该技术采用近远场变换获得远场,然而,检验该远场的准确性也是很重要的.为了解决此类问题,文中以球面近场测量为例,提供了一种解决方案.该方案主要探讨了球面波模式展开理论,该理论是实现球面近远场变换算法的关键,其将待测天线在空间建立的场展开成球面波函数之和,天线的加权系数既包含了远场信息也包含了近场信息.因此,不仅能够利用近场测量信息获得远场辐射特性,同样能够利用远场辐射特性反推得到近场处电场,这样就能检验由近远场变换算法得到的远场是否准确.文中首先推算得到了近远场变换公式,随后进一步推算得到远近场变换的公式,最后将本文算法计算结果与FEKO测量结果进行比较,二者吻合良好,从而证实了本文两种算法的有效性.  相似文献   

4.
A near-field to far-field (NF-FF) transformation is addressed for the case of spherical scanning using equivalent magnetic currents (EMCs) and matrix methods. It is based on the decoupling of the field components and the iterative retrieval of the radial component of the electric field. The technique is applied for far-field calculation as well as for the estimation of the current distribution of the antenna under test (AUT) using spherical near-field facilities. Results from measured near-field data of several antennas are presented and compared to those of the analytical solution via a spherical wave mode expansion method  相似文献   

5.
An innovative and effective technique to determine the far-field of a radiating system from near-field intensity data is introduced, analyzed, and tested. The approach is based on the simultaneous measurement of the amplitude of the voltages received by two different probe antennas moving over a single scanning surface in the near zone and performs the phase retrieval of the near-field by assuming as unknown the plane wave spectrum of the field. The radiated field is then straightforwardly evaluated. As compared to the existing phaseless measurement techniques, the use of two different probes makes it possible to avoid the need for a second scanning surface and thus allows the use of smaller (and cheaper) anechoic chambers. Furthermore, the measurement time is essentially equal to that required by conventional techniques based on the measurement of the complex near-field. The reliability and the effectiveness' of the approach are investigated and discussed and the key factors affecting its behavior are highlighted. In particular, the relevance of the difference between the plane wave spectra (PWS) of the two probe antennas in ensuring an acceptable reliability of the solution, with respect to the starting point of the procedure, is outlined. Finally, the effectiveness of the approach is confirmed by an extensive numerical analysis, which also shows the stability of the solution against data noise  相似文献   

6.
Spatial sampling and filtering in near-field measurements   总被引:1,自引:0,他引:1  
A sample spacing criterion and a data minimization technique for measurements made over the surface of a plane in the near field of an antenna are presented. The sample spacing is shown to depend on the distance from the antenna to the measurement plane, and on the extent to which evanescent waves can be neglected. The near-field data minimization technique utilizes two-dimensional spatial filtering to effect a significant reduction in computational effort required to calculate selected portions of the far-field pattern. Far-field patterns of anXband antenna calculated from near-field measurements are presented and compared with those measured on a standard far-field range. The far-field calculations are repeated for several near-field sample spacings and for various post-filter sample rates.  相似文献   

7.
Recent planar near-field scanning tests with ultralow-sidelobe antennas have confirmed that random near-field measurement errors will ultimately limit the accuracy of far-field patterns. A formulation is outlined for estimating the spectral signal-to-noise ratio (SNR) arising from noncorrectable near-field random measurement errors. The formulation applies to arbitrarily directive test antennas and probes-even nulling probes. A far-field parameter, called the scan plane coupling factor, may be computed directly from the near-field data, and then used to form the spectral SNR. The accuracy of the spectral SNR is confirmed by simulation and by actual tests with low-sidelobe AWACS array antenna  相似文献   

8.
For part 1 see ibid. vol.47, no.9, p.1280 (1994). Two computation schemes for calculating the far-field pattern in the time domain from sampled near-field data are developed and applied. The sampled near-field data consists of the values of the field on the scan plane measured at discrete times and at discrete points on the scan plane. The first computation scheme is based on a frequency-domain near-field to far-field formula and applies frequency-domain sampling theorems to the computed frequency-domain near field. The second computation scheme is based on a time-domain near-field to far-field formula and computes the time-domain far field directly from the time-domain near field. A time-domain sampling theorem is derived to determine the spacing between sample points on the scan plane. The computer time for each of the two schemes is determined and numerical examples illustrate the use and the general properties of the schemes. For large antennas the frequency-domain computation scheme takes less time to compute the full far field than the time-domain computation scheme. However, the time-domain computation scheme is simpler, more direct, and easier to program. It is also found that planar time-domain near-field antenna measurements, unlike single-frequency near-field measurements, have the capability of eliminating the error caused by the finite scan plane, and thus can be applied to broadbeam antennas  相似文献   

9.
介绍用于天线平面近场测量的一种近远场变换新算法。该法利用被测天线的平面波谱和口径场幅相分布之间的关系,以及天线口面的约束条件,用G-P迭代算法从平面波谱的置信谱域部分恢复出置信谱域外的平面波谱。这种方法减小了较小截断角下有限扫描面对测量精度的影响,并提高了天线近场测量的效率。  相似文献   

10.
A theoretical and experimental study is made of the effects of a dielectric of arbitrary thickness, permittivity, and loss tangent upon the aperture field distributions and the far-field radiation pattern characteristics of long-slot leaky-wave antennas cut on the broadwall of a rectangular waveguide and mounted in an infinite ground plane. The relevant integral equations for determining the aperture fields are developed and then solved using the moment method. Expressions for the far-field radiation patterns and isolation responses are developed. Calculated and experimental results for several antennas are presented and discussed  相似文献   

11.
We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003? substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.  相似文献   

12.
We introduce a near-field to far-field transformation algorithm that relaxes the usual restriction that data points be located on a plane rectangular grid. Computational complexity is O(Nlog N) where N is the number of data points. This algorithm allows efficient processing of near-field data with known probe position errors. Also, the algorithm is applicable to other measurement approaches such as plane-polar scanning, where data are collected intentionally on a nonrectangular grid  相似文献   

13.
The thought and formulation for near-field far-field transformation based on the direct time-domain computation scheme are given.The effect of the truncated scan plane is investigated by simulating time-domain measurement of an open-ended waveguide antenna, and a simple and effective criterion is derived for removing the truncation errors in the practical time-domain near-field measurements.  相似文献   

14.
Airborne or spaceborne radar systems often require tests before deployment to verify how well the system detects targets and suppresses clutter and jammer signals. The radar antenna diameter can be large and thus the conventional far-field test distance is impractical to implement. The theory and simulations of phase-focused near-field testing for adaptive phased array antennas is discussed. With near-field source deployment, standard phased-array near-field phase focusing provides far-field adaptive nulling equivalent performance at a range distance of one aperture diameter from the adaptive antenna under test. Both main beam clutter sources and sidelobe jammer sources are addressed. The phased array antenna elements analyzed are one-half wavelength dipoles over the ground plane. Bandwidth, polarization, array mutual coupling, and finite array edge effects are taken into account. Numerical simulations of an adaptive antenna that has multiple displaced phase centers indicate that near-field and far-field testing can be equivalent  相似文献   

15.
For accurate scattering computations in the far-field of flat finite objects, field based ray optical methods cannot be used directly, since the finiteness of the objects is not considered in the formulations. In this paper, planar near-field scanning techniques are used to overcome this problem. In particular, scattered ray optical fields are first computed in a scanning plane in the near-field region of the involved objects and are transformed into the far-field afterwards using field expansions in terms of spectrum density functions of outgoing waves. Since evanescent waves are avoided in the scanning plane, sampling rates less than lambda0/2 can be used for restricted angle range around the normal direction to the scanning plane. Reduced accuracy at grazing directions of observation is overcome by combining solutions provided by several scanning planes. The proposed approach is applied in the postprocessing stage of the recently developed hybrid method combining the uniform geometrical theory of diffraction with the finite element boundary integral technique and with the multilevel fast multipole method.  相似文献   

16.
It is well-known that the far field of an arbitrary antenna may be calculated from near-field measurements. Among various possible nearfield scan geometries, the planar configuration has attracted considerable attention. In the past the planar configuration has been used with a probe scanning a rectangular geometry in the near field, and computation of the far field has been made with a two-dimensional fast Fourier transform (FFT). The applicability of the planar configuration with a probe scanning a polar geometry is investigated. The measurement process is represented as a convolution derivable from the reciprocity theorem. The concept of probe compensation as a deconvolution is then discussed with numerical results presented to verify the accuracy of the method. The far field is constructed using the Jacobi-Bessel series expansion and its utility relative to the FFT in polar geometry is examined. Finally, the far-field pattern of the Viking high gain antenna is constructed from the plane-polar near-field measured data and compared with the previously measured far-field pattern. Some unique mechanical and electrical advantages of the plane-polar configuration for determining the far-field pattern of large and gravitationally sensitive space antennas are discussed. The time convention exp (j omega r) is used but is suppressed in the formulations.  相似文献   

17.
A fast multilevel algorithm with reduced memory requirements for the evaluation of transient near-field to far-field transforms is presented. The computational scheme is based on a hierarchical decomposition of an arbitrary shaped enclosing surface over which the near-fields of an antenna or a scatterer are given. For surface subdomains at the highest decomposition level, the angular-temporal far-field patterns are calculated directly from the known near fields over a sparse angular grid of directions and a short temporal duration. The multilevel computation comprises angular and temporal interpolations thus increasing angular resolution and temporal duration of radiation patterns while aggregating the subdomain contributions between successive decomposition levels. These steps are repeated until obtaining the transient far-field response of the whole enclosing surface. The computational complexity of the proposed algorithm is substantially lower than that of the direct evaluation. Reduction in memory requirements is obtained by formulating the algorithm as a marching-on-in-time windowed scheme. This approach allows for embedding of the accelerated transforms within existing near-field modeling tools.   相似文献   

18.
对于高增益天线,当频率达到太赫兹频段时,传统的天线测量技术均面临巨大挑战.针对太赫兹高增益天线的测量问题,论述了各种天线测量技术,如远场法、近场法和紧缩场法的可行性,分析了其各自的特点及其应用在太赫兹频段的局限性,基于全息的紧缩场测量技术在太赫兹高增益天线测量中,具有广阔的应用前景.  相似文献   

19.
The main plane far-field radiation pattern of an antenna under test from the corresponding main plane near-field data, using a circular-line acquisition, is presented. The method is based on the reconstruction of equivalent magnetic currents (EMCs) using decoupled integral equations and one-dimensional source components. The resultant fast procedure is applicable to linear and quasilinear array antennas. Experimental data results and comparison with complete spherical acquisition and center-line acquisition are presented  相似文献   

20.
基于球模式展开理论的近远场变换是天线球面近场测量系统实现的关键,它将待测天线在空间建立的场展开成球面波函数之和,由于其计算公式复杂,因而计算耗费时间长。该文在实际计算中利用快速傅里叶变换及矩阵的思想可以大幅度提高程序运行速度,节省计算时间。采用该方法对角锥喇叭天线的近远场数据进行仿真验证,结果表明外推远场的结果和理论值吻合良好,说明了该方法在保证计算精度的同时,可缩短计算时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号