首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have studied the pharmacological properties of genetically engineered human NK1 tachykinin receptors in which residues at the extracellular surface of the fourth transmembranal domain were substituted with the corresponding amino acids from the NK2 receptor. We show that substitution of G166C:Y167F in the human NK1 receptor induces high affinity binding of a group of tachykinin ligands, known as 'septides' (i.e. neurokinin A, neurokinin B, [pGlu6,Pro9]-substance P6-11 and substance P-methylester). In contrast, binding of substance P and non-peptide antagonists is unaffected by these mutations. This effect parallels that found on the rat receptor and is therefore species specific. Second, we demonstrate that mutation of Gly166 to Cys alone is both necessary and sufficient to create this pan-reactive tachykinin receptor, whereas replacement of Tyr167 by Phe has no detectable effect on the pharmacological properties of the receptor. Furthermore, analysis of the effect of N-ethylmaleimide and dithiothreitol on binding of radiolabelled substance P documents differences in the mode in which this ligand interacts with wild-type and mutant receptors and supports the existence of a mutational induced change in the conformational status of the NK1 receptor.  相似文献   

3.
1. In the conscious rat, three tachykinin NK3 receptor antagonists, namely SR142801 ((S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)pro pyl)-4-phenylpiperidin-4-yl)-N-methylacetamide), R820 (3-indolylcarbonyl-Hyp-Phg-N(Me)-Bzl) and R486 (H-Asp-Ser-Phe-Trp-beta-Ala-Leu-Met-NH2) were assessed against the intracerebroventricular (i.c.v.) effects induced by senktide, a selective NK3 receptor agonist, on mean arterial blood pressure (MAP), heart rate (HR) and motor behaviour. 2. Senktide (10-650 pmol per animal; i.c.v; n = 4-16) at the lowest dose caused a significant fall in MAP (-10 +/- 6 mmHg), while at the highest doses (100 and 650 pmol), senktide caused a rise in MAP (9 +/- 3 and 12 +/- 1 mmHg, respectively) when compared to vehicle. The intermediate doses (25 and 65 pmol) had no effect on MAP. The highest two doses caused a tachycardia of 62 +/- 15 and 88 +/- 8 beats min(-1), respectively. The dose of 65 pmol had a biphasic effect on HR, an initial bradycardia of 47 +/- 12 beats min(-1) followed by a tachycardia of 46 +/- 14 beats min(-1). The lowest doses caused either a rise of 52 +/- 10 beats min(-1) (25 pmol) or no effect (10 pmol) on HR. All doses of senktide caused similar increases in face washing, sniffing and wet dog shakes except at the dose of 100 pmol, when wet dog shakes were more than double those observed with the other doses. 3. The antagonist SR142801 (100 pmol -65 nmol per animal; i.c.v.; n = 6-8) caused increases in MAP at the highest two doses (6.5 and 65 nmol) while HR, dose-dependently, increased (23 +/- 6 to 118 +/- 26 beats min[-1]) and the onset dose-dependently decreased. The (R)-enantiomer, SR142806 (100 pmol - 65 nmol per animal; i.c.v.; n = 6-8) only caused rises in MAP (13 +/- 2 mmHg) and HR (69 +/- 11 beats min[-1]) at the highest dose. These drugs had no apparent effect on behaviour, except for the highest dose of SR142801 which increased sniffing. The antagonist R820 (650 pmol - 6.5 nmol per animal; i.c.v.; n = 6) had no effect on MAP or HR and only increased sniffing behaviour at 6.5 nmol. At 650 pmol (n = 6), R486 had no effect on any variable, but at 3.25 nmol, i.c.v. (n = 4) a delayed tachycardia and a significant increase in all behavioural variables were observed. 4. The cardiovascular responses induced by 6.5 nmol SR142801 and 25 pmol senktide were inhibited by R820 (6.5 nmol, 5 min earlier i.c.v.). In contrast, R820 failed to affect the central cardiovascular and behavioural responses induced by 10 pmol [Sar9, Met(O2)11]substance P, a NK1 receptor selective agonist. The senktide-induced behavioural changes were not inhibited by R820 (6.5 nmol, i.c.v.) while R486 (650 pmol, i.c.v.) blocked both the cardiovascular and behavioural responses to 25 pmol senktide. A mixture of antagonists for NK1 (RP67580; 6.5 nmol) and NK2 (SR48968; 6.5 nmol) receptors injected i.c.v. did not affect the cardiovascular response to SR142801. Cross-desensitization was shown between the central responses to SR142801 and senktide, but not between SR142801 and [Sar9, Met(O2)11]substance P. 5. The antagonists SR142801 and SR142806 (6.5-650 nmol kg(-1); n = 5-7), given i.v., did not evoke any cardiovascular or behavioural changes, except a delayed bradycardia for SR142806 (650 nmol kg[-1]), and also failed to inhibit the increase in MAP evoked by senktide (4 nmol kg(-1), i.v.). However, at the highest dose, both drugs slightly reduced the senktide-induced tachycardia. 6. Although the present data are consistent with the in vitro pharmacological bioassays and binding data, showing that SR142801 is a poor antagonist at rat peripheral NK3 receptors, they suggest that SR142801 has a partial agonist action at these receptors centrally. A separation of the cardiovascular and behavioural effects mediated by central NK3 receptor activation was achieved with SR142801 and R820 but not with R486. These results could be explained by the existence of NK3 receptor subtypes in the rat or by the differential activation and inhibition of the same receptor protein linked to the production of different second messengers. Differences in the pharmacokinetic or pharmacodynamic properties of the antagonists cannot be excluded at this time.  相似文献   

4.
The tachykinin NK1 receptor is widely expressed in the mammalian central and peripheral nervous system. Powerful pharmacological tools (agonists and antagonists) are now available to elucidate the physiological role of NK1 receptors at these levels, as well as to understand their role in diseases and establish the possible therapeutic usefulness of NK1 receptor antagonists for treatment of human diseases. The structure-activity studies that have led to the development of potent peptide and non-peptide ligands for the tachykinin NK1 receptor are here reviewed. Among the peptide agonists and antagonists, linear and cyclic sequences have been developed. The non peptide antagonists belong to different chemical classes, i.e. steroids, perhydroisoindolones, quinuclidines, piperidines and tryptophane derivatives. The first non peptide antagonists for NK1 receptors have been obtained by random screening of chemical compounds large collections. The resulting leads were optimized with 'classic' structure activity approaches, aiming at identifying 'common' motifs for interaction with the receptor by ligands of different chemical classes. The results derived from the recent application of molecular biology techniques were useful to drive the design of new ligands toward a precise structural definition of ligand-receptor bi-molecular interactions. Studies on mutant receptors have established that the sites of interaction of peptide agonists and non peptide antagonists with the tachykinin NK1 receptor are largely non overlapping. Moreover, data obtained from mutagenesis of the NK1 receptor further indicate that some amino acid residues in the NK1 receptor sequence are critical for determining the binding affinity of some but not all ligands. Therefore, different antagonists discovered from random screening may not possess common points of interaction or common structural and conformational characteristics for their interaction with the tachykinin NK1 receptor. The tachykinin NK1 receptor couples with G-proteins to determine its biological effects in target cells. Several G-proteins both sensitive (Go, Gi) and insensitive (Gq, G11) to pertussis toxin can mediate the action of NK1 receptors. Moreover, several second messanger signalling systems (elevation of intracellular calcium, stimulation of phosphoinositol turnover, arachidonic acid mobilization, cAMP accumulation) have to be activated following NK1 receptor signalling. Also a direct modulation of certain ion channels at membrane level has been proposed. The NK1 receptor undergoes prompt and significant tachyphylaxis upon exposure to the agonist: this has been shown to be linked with receptor internalization which also occurs physiologically when the NK1 receptor is stimulated by endogenous tachykinins.  相似文献   

5.
Since tachykinins released from lung sensory nerve endings are thought to play a role in inflammatory diseases of airways via NK1 and NK2 receptors, dual tachykinin NK1 and NK2 receptor antagonists may have a great therapeutic potential. In vitro, the cyclopeptide S 16474 (cyclo-[Abo-Asp(D-Trp(Suc0Na)-Phe-N-(Me)Bzl)]) bound to both human tachykinin NK1 and NK2 receptors expressed in two lines of transfected Chinese hamster ovary cells (IC50 values 85 nM and 129 nM, respectively), while showing a poor affinity for the rat tachykinin NK1 receptor. S 16474 inhibited the contractions induced by substance P in isolated rabbit vena cava (pA2 7.0) and by neurokinin A in rabbit pulmonary artery (pA2 5.6). In vivo in anaesthetized guinea-pigs, S 16474 was found to dose dependently inhibit the bronchoconstrictions induced by intravenously administered substance P, neurokinin A and capsaicin. Plasma extravasation evoked in bronchi by endogenously released tachykinins under vagus nerve stimulation was abolished by S 16474 (10 mu mol/kg i.v.). These results demonstrate clearly that S 16474 is a tachykinin receptor antagonist exhibiting, in vitro and in vivo, a dual inhibitory effect on NK1 and NK2 receptors.  相似文献   

6.
A potent and orally active NK1 antagonist, trans-N-[3, 5-bis(trifluoromethyl)benzyl]-7,8-dihydro-N, 7-dimethyl-5-(4-methylphenyl)-8-oxo-1,7-naphthyridine-6-carboxamide (1t), was shown to exist as a mixture of separable and stable (R)- and (S)-atropisomers (1t-A and 1t-B) originating from the restricted rotation around the -C(6)-C(=O)- bond; the antagonistic activities of 1t-A were ca. 6-13-fold higher than those of 1t-B. Analogues of 1t (3), which have (S)- and (R)-methyl groups at the benzylic methylene portion of 1t, were prepared and separated into the diastereomeric atropisomers, 3a-A, 3a-B and 3b-A, 3b-B, in enantiomerically pure forms. Among the four isomers of 3, the (aR, S)-enantiomer (3a-A) exhibited the most potent antagonistic activities with an IC50 value of 0.80 nM (in vitro inhibition of [125I]BH-SP binding in human IM-9 cells) and ED50 values of 9.3 micrograms/kg (iv) and 67.7 micrograms/kg (po) (in vivo inhibition of capsaicin-induced plasma extravasation in guinea pig trachea), while the activity of the (aS,R)-enantiomer (3b-B) was the weakest with an IC50 value of 620 nM. The structure-activity relationships in this series of antagonists indicate that the (R)-configuration at the axial bond and the stacking (or stacking-like) conformation between the two phenyl rings as shown in 1t-A and 3a-A are essential for high-affinity binding and suggest that the amide moiety functions as a hydrogen bond acceptor in the interaction with the receptor.  相似文献   

7.
1. The ability of CP-99,994, and its less active enantiomer, CP-100,263, to inhibit spontaneous behaviours and hyperalgesia induced by central infusion of the NK1 receptor agonist, GR73632 or intraplantar injection of formalin was investigated in rats and gerbils. 2. GR73632 (3 pmol, i.c.v.)-induced foot tapping in gerbils was dose-dependently inhibited by CP-99,994 (0.1-1 mg kg-1, s.c.), but not by CP-100,263 (10 mg kg-1, s.c.) using pretreatment times up to 60 min. The centrally active dose-range for CP-99,994 was increased to 1-10 mg kg-1 s.c. with a higher challenge dose of GR73632 (30 pmol, i.c.v.). 3. In gerbils, intrathecal (i.t.) injection of GR73632 (30 pmol) elicited behaviours (licking, foot tapping or flinching and face washing) which closely resembled, but which was less specifically localized than, behaviours seen in animals injected with formalin (0.1-5%) into one hindpaw. 4. In rats, CP-100,263, but not CP-99,994 (up to 30 mg kg-1), inhibited the early phase response to intraplantar injection of 5% formalin (ID50 = 13.9 mg kg-1). The late phase was inhibited by both compounds (ID50 values 36.3 and 20.9 mg kg-1, respectively). In gerbils, there was marginal evidence for enantioselective inhibition of the early phase induced by formalin (2%). The ID50 values were 6.2 mg kg-1 for CP-99,994 and 13.4 mg kg-1 for CP-100,263. 5. Intrathecal injection of GR73632 (30 pmol) caused thermal hyperalgesia in igerbils which was inhibited enantioselectively by s.c. administration of CP-99,994 (ID50= 2.46 mg kg-1), but not by CP-100,263 (30 mg kg-1).6. In gerbils, intraplantar injection of formalin (0.1%) caused thermal hyperalgesia which was inhibited by CP-99,994 (ID50= 1.1 mg kg-1, s.c.). There was a nonsignificant trend for an anti-algesic effect of CP-100,236 (estimated ID50 = 8.2 mg kg-1, s.c.).7 These findings support the proposal that NK1 receptor antagonists may be useful in the clinical management of pain and reinforce the need to dissociate specific and nonspecific antinociceptive effects of available compounds.  相似文献   

8.
The nature of the tachykinin receptors involved in the contraction of the circular muscle of dog colon has been investigated. The following rank order of potency for agonists was obtained: [Sar9,Met(O2)11]substance P > or = neurokinin A > [beta-Ala8]neurokinin A-(4-10) > [MePhe7]neurokinin B. The efficacy of the tachykinin NK2 receptor agonists was significantly greater than that of the tachykinin NK1 receptor agonists and of carbachol. A concentration-dependent rightward shift of the motor response to neurokinin A (obtained in the presence of (+/-)-CP 96,345) was induced by peptide and non-peptide tachykinin NK2 receptor antagonists with this rank order: MEN 10,627 = SR 48,968 > L 659,877 > MEN 10,376 > MDL 28,564. MEN 10,627 and SR 48,968 affinities were similar to those measured in human tissues. In conclusion, the tachykinin NK2 receptor plays a predominant role in tachykinin-induced contraction of the canine colonic circular muscle and this tissue could be useful to predict the pharmacological actions of MEN 10,627 and SR 48,968 in human colon.  相似文献   

9.
The regulation of dopaminergic and cholinergic function by neurokinin-3 (NK3) receptor activation was examined in vivo in urethane-anaesthetized guinea pigs with microdialysis probes. The local application of the NK3 tachykinin receptor agonist senktide in the region of dopamine cell bodies (pars compacta of the substantia nigra and ventral tegmental area) and in the area of cholinergic cell bodies (septal area) markedly enhanced the extracellular dopamine (DA) and acetylcholine (ACh) concentration throughout their respective target areas, i.e. striatum, nucleus accumbens, prefrontal cortex for dopaminergic systems and hippocampus for cholinergic neurons. The enhancing effect of senktide on neurotransmitter release was dose dependently blocked by the selective non-peptide NK3 receptor antagonist SR142801 (0.1-1 mg/kg, i.p.), whereas its inactive S-enantiomer SR142806 (0.3-1 mg/kg, i.p.) did not exert any antagonistic activity on the effect of intranigral or intraseptal application of senktide. These results demonstrate that NK3 receptors can modulate the activity of central DA and ACh systems.  相似文献   

10.
We developed a calcium signaling-based assay, using cultured human embryonic kidney cells (HEK), that evaluates simultaneously, the activation/desensitization or blockade of the proteinase-activated receptors, PAR1 and PAR2. Using this assay, we analyzed the actions of a number of previously described putative PAR1-targeted peptide agonists and antagonists. We found that most of the previously described PAR1-targeted agents can also activate/desensitize PAR2, and most of these peptides can also activate a calcium signaling pathway in a target cell that possesses PAR2 along with PAR1. Furthermore, we used this assay to develop a PAR1 receptor-activating probe [Ala-parafluoroPhe-Arg-Cha-Cit-Tyr-NH2 (Cit-NH2)], which displays a high degree of specificity for PAR1 over PAR2, and we used the assay to quantitate the ability of trypsin to disarm the activation of PAR1 by thrombin. The abilities of the PAR1-targeted agents to desensitize or block PAR1 in the HEK cell assay were compared with their activities in a human platelet aggregation assay. Our data illustrate the usefulness of the HEK cell assay for evaluating the PAR1/PAR2 selectivity of PAR-activating agonists. The PAR1-selective agonist that we developed using the assay should prove useful for studying the effects of selectively activating PAR1 in vivo.  相似文献   

11.
12.
It has been suggested that tachykinin NK1 receptor-mediated neurogenic inflammation, characterized by microvascular leakage, mucus secretion, and infiltration and activation of inflammatory cells in the airways, may be involved in allergic asthma. Therefore, in a guinea pig model of allergic asthma, we investigated the involvement of the NK1 receptor in allergen-induced early (EAR) and late (LAR) asthmatic reactions, airway hyperreactivity (AHR) after these reactions and airway inflammation, using the selective nonpeptide NK1 receptor antagonist SR140333. On two different occasions, separated by 1 wk interval, OA-sensitized guinea pigs inhaled either saline (3 min) or SR140333 (100 nM, 3 min) at 30 min before as well as at 5.5 h after OA provocation (between the EAR and LAR) in a random crossover design. A control group, receiving saline inhalations before and at 5.5 h after the two OA provocations, was included as well. SR140333 had no significant effect on either the EAR or the LAR compared with saline control inhalations. However, the NK1 receptor antagonist significantly reduced the OA-induced AHR to histamine, both after the EAR at 5 h after OA challenge (1.77 +/- 0.13-fold increase in histamine reactivity versus 2.50 +/- 0.25-fold increase in the control animals, p < 0.01) and after the LAR at 23 h after OA challenge (1.15 +/- 0.12-fold increase versus 1.98 +/- 0. 34-fold increase, respectively, p < 0.05). Moreover, bronchoalveolar lavage studies performed at 25 h after the second OA provocation indicated that SR140333 significantly inhibited the allergen-induced infiltration of eosinophils, neutrophils, and lymphocytes in the airways (p < 0.05 for all observations), whereas a tendency to reduced accumulation of ciliated epithelial cells in the airway lumen was observed (p = 0.10). These results indicate that the NK1 receptor is involved in the development of allergen-induced AHR to histamine, and that NK1 receptor-mediated infiltration of inflammatory cells in the airways may contribute to this AHR.  相似文献   

13.
Time-resolved small-angle X-ray scattering (TR-SAXS) was used to monitor the structural changes that occur upon the binding of the natural substrates to a mutant version of the allosteric enzyme aspartate transcarbamoylase from Escherichia coli, in which the creation of a critical link stabilizing the R state of the enzyme is hindered. Previously, SAXS experiments at equilibrium showed that the structures of the unligated mutant enzyme and the mutant enzyme saturated with a bisubstrate analog are indistinguishable from the T and R state structures, respectively, of the wild-type enzyme (Tauc et al., Protein Sci. 3:1998-2004, 1994). However, as opposed to the wild-type enzyme, the combination of one substrate, carbamoyl phosphate, and succinate, an analog of aspartate, did not convert the mutant enzyme into the R state. By using TR-SAXS we have been able to study the transient steady-state during catalysis using the natural substrates rather than the nonreactive substrate analogs. The steady-state in the presence of saturating amount of substrates is a mixture of 60% T and 40% R structures, which is further converted entirely to R in the additional presence of ATP. These results provide a structural explanation for the reduced cooperativity observed with the mutant enzyme as well as for the stimulation by ATP at saturating concentrations of substrates. They also illustrate the crucial role played by domain motions and quaternary-structure changes for both the homotropic and heterotropic aspects of allostery.  相似文献   

14.
15.
1. Repeated applications of neurokinin A (NKA) to oocytes injected with 25 ng wild-type hNK2 receptor cRNA caused complete attenuation of second and subsequent NKA-induced responses while analogous experiments using repeated applications of GR64349 and [Nle10]NKA(4-10) resulted in no such desensitization. This behaviour has been previously attributed to the ability of the different ligands to stabilize different active conformations of the receptor that have differing susceptibilities to receptor kinases (Nemeth & Chollet. 1995). 2. However, for Xenopus oocytes injected (into the nucleus) with 10 ng wild-type hNK2 receptor cDNA, a single 100 nM concentration of any of the three ligands resulted in complete desensitization to further concentrations. 3. On the other hand, none of the ligands caused any desensitization in oocytes injected with 0.25 ng wild-type hNK2 receptor cRNA. even at concentrations up to 10 microM. 4. The two N-terminally truncated analogues of neurokinin A have a lower efficacy than NKA and it is likely that it is this property which causes the observed differences in desensitization, rather than the formation of alternative active states of the receptor. 5. The peak calcium-dependent chloride current is not a reliable measure of maximal receptor stimulation and efficacy is better measured in this system by studying agonist-induced desensitization. 6. The specific adenylyl cyclase inhibitor SQ22536 can enhance NKA and GR64349-mediated desensitization which suggests that agonist-induced desensitization involves the inhibition of adenylyl cyclase and the subsequent down-regulation of the cyclic AMP-dependent protein kinase, possibly by cross-talk to a second signalling pathway.  相似文献   

16.
BACKGROUND: Since the development of the radioallergosorbent test (RAST) for quantification of allergen-specific IgE, numerous non-radoisotopic methods have been devised which combine the proven cellulose disc technology with enzyme-linked immunoassay methods. The HY.TEC EIA (Hycor Biomedical, Inc. Irvine, CA) was compared with Pharmacia CAP with respect to overall system features and assay performance characteristics. METHODS: The HY.TEC EIA and Pharmacia CAP were compared with respect to calibrator range, sensitivity, type of detection, type of solid phase, throughput, and mode of operation. To determine the assay sensitivity and specificity for a variety of allergens, a total of 2,447 tests were performed on both CAP and HY.TEC EIA. The samples were scored positive in both cases using a cutoff of 0.35 IU/mL. RESULTS: The general features of the HY.TEC EIA system are comparable to Pharmacia UniCAP, with the added advantage of higher throughput. Intra-assay precision was 7% and inter-assay precision was 9-15%. Using CAP as a comparative method, HY.TEC EIA has a sensitivity of 94.0% and a specificity of 94.4%. CONCLUSIONS: The HY.TEC EIA demonstrates excellent agreement with the Pharmacia CAP system in the determination of allergen-specific IgE. With the automation necessary in today's clinical laboratory, we conclude that the HY.TEC EIA is a state-of-the-art tool for the diagnosis of allergic disease.  相似文献   

17.
Short RNA species that encompass the psi domain of the retroviral genome spontaneously form dimers in vitro, and the retroviral nucleocapsid protein activates this dimerization in vitro. Addition of gag RNA sequences downstream of the 3' end of the psi domain decreases the level of spontaneous dimerization. Here, we report the effects of RNA length on dimerization in vitro, studied with RNA fragments from Moloney murine leukaemia virus that contain the psi domain and all or part of the gag sequence. Extension of the RNA leads to progressive inhibition of the in vitro dimerization process. Sequences located downstream of the 3' end of the psi domain seem to stabilize the monomeric structures. This stabilization participates in dimerization of the RNA sequences involved in the recognition of two RNA molecules. We studied the ability of nucleocapsid protein 10 to promote dimerization of such long RNA fragments, and found that the protein greatly enhances their dimerization in vitro. We propose that nucleocapsid protein 10 stimulates the overall dimerization process by reduction of the energy barrier that must be overcome to allow dimer formation. Our results show that dimerization of RNA form Moloney murine leukaemia virus in vitro is enhanced by nucleocapsid protein 10. This finding is in agreement with the involvement of the nucleocapsid protein in RNA dimerization in vivo.  相似文献   

18.
The nonpeptide, tachykinin NK1 receptor antagonist, CP-96345, permits the study of the physiological role of extrapyramidal substance P systems. Using microdialysis, we observed that locally applied CP-96345 (200 nM) caused a significant increase in dopamine release in the striatum as well as substantially enhancing striatal dopamine release caused by a low dose of methamphetamine (0.5 mg/kg s.c.). In addition, multiple systemic administrations of CP-96345 almost doubled the dopamine-mediated responses of the striatal neurotensin and dynorphin systems to high doses of methamphetamine (10 mg/kg/dose s.c.). Our findings suggest that the physiological role of substance P released in the striatum is to decrease the activity of the nigrostriatal dopamine pathway.  相似文献   

19.
The effects of lateral ventricular injections of succinyl-[Asp?, N-Me-Phe?]-substance P (SENK; 25,100,200 ng), a tachykinin NK? receptor agonist, and [Sar?, Met(O2)11]-substance P (Sar Met; 100, 200 ng), an NK? receptor agonist, on normal (gastric fistula closed) and sham drinking (gastric fistula open) of hypertonic NaCl by sodium-deficient rats were compared. Intraventricular injections of Sar Met had no effect on NaCl intake in either condition. Injections of 100 ng and 200 ng SENK caused an equal suppression of NaCl intake in the 2 fistula conditions. The latency to drink was not affected, but the initial lick rate was significantly lower and decayed more rapidly after 100 ng SENK than after saline or 25 ng SENK. The results show that (a) the tachykinin subtypes are not equally involved in the control of need-induced salt intake; (b) negative feedback from the stomach and distal gastrointestinal tract is not required for intraventricular injections of SENK to suppress sodium appetite; (c) the activation of NK? receptors decreases the oral excitatory influence of hypertonic: NaCl in sodium-deficient rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Most physiological processes are regulated by peptides that perform their functions by interacting with specific receptors on cells. Specific conformations of the peptides are required for correct interactions to take place, and a knowledge of the biologically important conformation is vital for the understanding of biological function. Over the last few years extensive studies using nuclear magnetic resonance and circular dichroism have been carried out on bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) and its antagonists with the objective of developing new drugs to combat severe pathologies associated with its production. In the present review, these techniques for the determination of peptide conformation are reviewed and applied to the study of bradykinin and its antagonists. Modeling of these conformational data in the presence of the B2 receptor or an antibody allows the biologically active conformations to be deduced and these are presented in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号