首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综合考虑自然风速时空分布以及风剪切、塔影效应的影响,分析叶轮质量不平衡故障对双馈风力发电机组电气特性的影响。首先对故障特性进行理论分析,分别推导得到了考虑风速时空分布前后叶轮质量不平衡故障下转矩和定子电流的解析表达式及其变化特性;然后在Matlab/Simulink平台进行仿真验证。理论和仿真表明,考虑风速时空分布以及风剪切、塔影效应的影响后,叶轮质量不平衡故障将导致定子电流中存在转频及3k(k=1,2,…,n)倍转频的调制频率,但以转频和3倍频波动为主。其中3k倍频是由风速时空分布造成的,其幅值不会随故障程度变化。使用等效风速替代平均风速,该研究更加贴合自然界中风力机实际运行状况,可为实际风力机运行中的故障诊断提供参考。  相似文献   

2.
在双馈发电机等值电路的基础上,建立了相应的基本方程,并求出定子电流的解析表达式.通过对定子电流的分析,求得输出电流为额定值时的励磁电压有效值解析表达式及初相位的取值范围.在此基础上,通过对定子电流有功分量及无功分量的分析,得到功率因数超前及功率因数滞后时的励磁电压初相位取值范围.为满足实际工程需要,对电机的参数作进一步简化,最终通过电机的实际参数进行仿真,验证了其理论分析的正确性.  相似文献   

3.
通过研究已有的风力发电机空载并网控制的文献,指出定子磁链并网控制策略的不足之处,提出了电网电压并网控制策略,同时通过试验设计了并网前相位与相序的检测方法。通过仿真发现,在此控制策略下,双馈风力发电机定子侧的电压在频率、幅值、相位上接近电网电压,达到了无冲击并网的目的,验证了此控制策略的正确性和有效性,是空载并网方式的一种理想的控制策略。  相似文献   

4.
根据变速恒频双馈风力发电机定子磁链定向矢量控制理论,采用双闭环结构SVPWM(Space Vector Pulse Width Modulation),通过控制转子侧励磁电流达到控制电机定子侧的无功功率和频率的目的。并通过PSIM软件进行亚同步、超同步运行实验,双闭环控制保证了双馈电机的快速响应,仿真验证了双馈风力发电机控制策略的正确性  相似文献   

5.
现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动质量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并人电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。  相似文献   

6.
翟明  窦正刚 《新能源》2000,22(8):14-16
阐述了双馈风力发电机及其风电系统的工作原理,特性曲线及特点。指出,该系统与普通风力发电系统相比,在风力资源的充分利用方面更具优势,大大拓宽了风速的可利用范围,对提高风电发电能力具有重要的意义。  相似文献   

7.
在磁场定向矢量控制的基础上,对变速恒频双馈风力发电机的功率特性进行了理论分析,建立了双馈发电机功率因数、功角特性、有功功率控制的数学模型并讨论了控制参数和运行状态对功率特性的影响.仿真和实验结果基本一致,直观地反映了变速恒频双馈风力发电机的功率特性,验证了所提出的双馈发电机的功率控制模型的正确性.  相似文献   

8.
9.
无刷双馈风力发电机的理论分析   总被引:11,自引:0,他引:11  
介绍了无刷双馈发电机的结构和变速恒频发电原理。从电机稳态模型出发,分析了无刷双馈电机作为变速恒频发电机在各种不同转速范围内各定、转子间的能量传递关系,得出了无刷双馈电机适用于风力发电的结论。  相似文献   

10.
王芸  龚文明  黄伟煌 《太阳能学报》2014,35(12):2387-2394
针对双馈式风力发电机的传统控制策略存在鲁棒性能较差,过渡过程持续时间较长,母线电压过调制等问题,提出一种改进的电压连锁故障穿越控制方案。通过对转子侧变流器采用鲁棒控制策略,网侧变流器采用改进无功电流控制策略,可同时改善双馈式风力发电机的低电压穿越(LVRT)和高电压穿越(HVRT)能力。同时以双馈式风力发电机的定子动态磁链为分析基础,推导其在电压骤降和骤升故障期间的过渡过程特性。仿真表明:所提出的双馈式风力发电机的鲁棒增强控制策略,可有效提高风力机在电网电压连锁故障情况下的穿越性能。  相似文献   

11.
定子绕组匝间短路作为双馈风力发电机常见故障之一,直接影响双馈风力发电机组的安全和稳定运行。但是,由于供电电源客观上存在三相不对称问题,这会造成匝间短路故障的误判。为了消除电源不对称对定子绕组匝间短路故障诊断的影响,文章首先通过多回路分析方法建立双馈风力发电机的仿真模型,然后结合对称分量法进行故障机理分析,最后依据时域图和频域图,综合判断匝间短路故障的存在与否及故障程度。试验结果表明:该方法可以消除电源不对称的影响,准确地诊断出定子绕组匝间短路故障。  相似文献   

12.
双馈风力发电机无速度传感器控制   总被引:2,自引:0,他引:2  
提出了一种新型的基于模型参考自适应原理的双馈风力发电机的无速度传感器矢量控制方案.根据双馈风力发电机运行的特点,针对双馈发电机并网前空载励磁阶段和并网后发电运行阶段分别采用了不同的无速度传感器矢量控制方案.在发电机并网前,根据双馈发电机空载时定子侧电压矢量的q轴分量估计发电机并网前转速及转子位置.在并网运行阶段采用了一种基于双馈电机磁链关系的模型参考自适应方法进行转速及转子位置的跟踪.最后在理论分析的基础上,在实验室的双馈风力发电机组模拟平台上进行了实验研究.实验结果证明了该文提出的双馈风力发电机无速度传感器矢量控制方案的正确性和可行性.  相似文献   

13.
提出了双馈风电机组参加频率控制的2种控制策略,惯性控制策略和下降速率控制策略,建立了2种控制策略下的双馈机组的控制器模型.为充分发挥双馈发电机和常规发电机的快速功率调节能力,下降速率控制策略采用冲失滤波器提取频率变化的高频信号做为双馈发电机的频率输入信号,并对双馈机组的控制参数提出了基于ISE优化设计方法.建立了含风电机组的两区域AGC控制系统模式,进行了负荷扰动仿真,对2种控制策略下的系统动态性能进行了比较.仿真结果表明,基于下降速率的控制策略可以使双馈风电机组在频率调节中充分发挥有功调节作用.  相似文献   

14.
《太阳能》2007,(7):55-55
近日,由北京利德华福公司投资成立的北京清能华福风电技术有限公司与清华大学的合作项目1.5MW双馈异步风力发电机变流器研制成功,并一次性通过了兰州电机厂地面满载试验。本次双方合作共同进入风电市场,正是依托利德华福深厚的研发功底、先进的生产工艺以及在电力行业的成熟应用经验,结合清华大学技术、人才领域优势,通过双方长期不懈的努力获得的卓越成果。  相似文献   

15.
阐述了双馈风力发电机实现变速恒频的工作原理,讨论了双馈电机的运行状态,推导了双馈电机功率传输方式与转差率的关系,指出了变速恒频风力发电系统的优点是拓宽了风速的可利用范围,对提高风电场发电能力具有重要意义。  相似文献   

16.
以分析双馈风力发电机交流励磁的电磁本质为目标,运用空间矢量理论建立了双馈风力发电机的空间矢量模型;在此基础上,建立了变速变桨双馈风力发电机组的整机模型,给出了不同运行状态下的仿真曲线。在转子绕组自行闭合与加入转子交流励磁2种情况下,对双馈电机中定转子磁动势空间矢量的相位变化进行对比,揭示了交流励磁对于改变转子磁动势空间矢量相位的作用。研究结果表明,当双馈电机运行在亚同步状态时,通过控制交流励磁电流可以使转子磁动势空间矢量的相位超前于定子磁动势空间矢量的相位,从而使双馈电机在转速低于同步转速时也能处于发电状态。  相似文献   

17.
风力发电机电动叶轮锁作为风力发电系统的关键组件,具有显著的优势。它增强了系统的安全性,防止意外伤害风险;提供便利的维护操作,通过远程控制实现锁定和解锁;提升了系统的运行稳定性,减少负荷和振动;延长了设备的使用寿命,降低维修成本;增加了系统的可靠性,自动化控制确保精确和一致性。这些优势共同作用于风力发电机,提高了其工作效率和可靠性,同时减少了风险和维护成本,推动了风力发电技术的发展和应用。  相似文献   

18.
为研究双馈风力发电机(DFIG)在电网频率发生变化情况下的暂态特性,建立电网中风力发电系统数学模型,网侧和机侧变换器分别采用基于电网电压定向和电流前馈补偿的定子磁链定向矢量控制策略。根据建立的模型对电网频率变化情况下风力机输出特性进行仿真分析,仿真结果与实测数据进行比较验证模型的正确性。针对电网频率变化过程中引起的转子过电流提出用Butter Worth对转子电流进行低通滤波,可提高双馈风力发电机在电网频率瞬变情况下的穿越能力并取得较好的控制效果。  相似文献   

19.
针对风力发电系统中的双馈电机提出一种转子感应电势定向矢量控制方法。通过调节双馈电机转子侧的瞬时有功电流和无功电流,实现对电机力矩和转子侧励磁电流的调节,进而实现双馈电机无功功率调节。在控制过程中只需检测交流侧电流电压,不需要位置传感器,所以可以应用无速度传感器。最终通过仿真试验证明该方法的正确性和实用性。  相似文献   

20.
矩阵式变换器励磁的双馈风力发电机系统   总被引:8,自引:0,他引:8  
该文建立了基于双馈电机的变速恒频风力发电系统模型。该系统采用矩阵式变换器作为交流励磁电源,利用定子磁场定向的矢量变换控制实现有功功率和无功功率的独立调节,采用最佳风能控制策略,使系统能够在不同风速下跟踪最大风能曲线,实现风能的有效利用。仿真结果展现了系统的优良特性,在一定程度上验证了该方案的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号