共查询到17条相似文献,搜索用时 93 毫秒
1.
针对齿轮故障振动信号的多分量、多频率调制特性且早期故障振动信号信噪比低,故障特征微弱难以提取的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和奇异值差分谱的故障诊断方法。首先对采集到的齿轮故障振动信号进行VMD分解,得到一系列窄带本征模态分量(band-limited intrinsic mode functions,BLIMFS),由于噪声的干扰,从各个模态分量的频谱中很难对故障做出正确的判断;然后根据相关系数准则,选取与原始信号相关系数较大的分量构建Hankel矩阵并进行奇异值分解,求取奇异值差分谱,从差分谱中确定重构信号的有效阶次对信号进行降噪处理;最后对降噪处理后的信号进行Hilbert包络谱分析,即可从中准确地识别出齿轮的故障特征频率。仿真信号和齿轮箱齿轮故障模拟实验结果表明,该方法能够有效地降低噪声的影响,准确地提取到齿轮微弱的故障特征信息。 相似文献
2.
3.
为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背景噪声的影响,难以从PF分量准确得到故障频率,对PF分量进行Hankel矩阵重构和奇异值分解,相应的得到奇异值差分谱,根据奇异值差分谱理论对某个PF分量进行消噪和重构,然后再求重构后PF分量的包络谱,便能准确地得到故障频率。仿真分析和滚动轴承内圈故障实例很好地验证了提出的改进方法的有效性。 相似文献
4.
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。 相似文献
5.
针对轴承的振动信号往往伴有强烈噪声以及基于直角坐标表示的时间序列对故障特征表现不直观的问题。提出了一种奇异值差分谱和对称极坐标法(Symmetrized Dot Pattern,SDP)相结合的轴承故障特征提取方法。首先,运用奇异值差分谱理论对原始振动信号进行降噪处理;然后运用SDP方法将时间序列变换成可视化的极坐标图形;通过观察可视化图形的差异实现轴承的故障诊断。实验结果验证了该方法能够提高信噪比,增强对轴承故障的特征提取效果。 相似文献
6.
基于奇异值差分谱与改进包络分析的轴承故障特征提取 总被引:1,自引:0,他引:1
针对滚动轴承振动信号故障特征难以提取的问题,提出了一种基于奇异值差分谱与改进包络分析的轴承故障特征提取方法。首先,通过奇异值分解将原始轴承振动信号分解为一系列能够线性叠加的分量信号,利用故障特征分量和噪声分量在奇异值上的差异,根据奇异值差分谱的性质筛选出有效奇异值,选择包含故障特征的分量重构信号。针对奇异值分解去噪后仍存在残余噪声,采用改进包络分析,在频域中进一步去除重构信号中的残余噪声。最后对实测轴承信号进行分析,准确地提取到故障特征明显、故障频率突出的轴承故障信号,完成故障诊断。 相似文献
7.
为有效地提取出轴承故障的特征频率,提出了基于变分模态分解(VMD)和奇异值差分谱(SVDS)相结合的轴承故障诊断方法.该方法主要有三个步骤,一是通过VMD对轴承故障信息进行分解,并得到若干个不同频段的分量信号;二是选取有效的分量信号构建Hankel矩阵,并对该矩阵进行奇异值分解,由此得到SVDS曲线;三是通过SVDS曲... 相似文献
8.
针对齿轮箱齿轮早期故障特征信号微弱且受环境噪声影响严重,故障特征频率难以提取以及传统共振解调方法中带通滤波器参数不易确定的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和快速谱峭度(Fast Spectral Kurtosis,FSK)的故障诊断方法。利用VMD对采集到的齿轮故障振动信号进行分解,得到一系列窄带本征模态分量(Band-limited Intrinsic Mode Functions,BLIMFS);依据相关系数准则,选取与原始信号相关系数较大的分量进行快速谱峭度计算,用谱峭度图确定最佳的中心频率和带宽进行相应带通滤波处理。最后对滤波后的信号进行能量算子包络解调分析,即可从包络谱中准确地识别齿轮故障特征频率。通过仿真信号和齿轮故障实验数据对所提方法进行了验证,结果表明,该方法能够有效地降低噪声的影响,准确地提取齿轮早期故障信号中的微弱特征信息。 相似文献
9.
针对强噪声环境下齿轮早期故障特征信号微弱,故障特征信息难以提取的问题,提出了变分模态分解(Variational Mode Decomposition,VMD)和最小熵反褶积(Minimum Entropy Deconvolution,MED)的诊断方法。首先,利用VMD对采集到的齿轮故障振动信号进行自适应分解,得到一系列窄带本征模态分量(band-limited intrinsic mode functions,BLIMFS),由于噪声的干扰,从各个模态分量的频谱中很难对故障做出正确的判断;然后依据相关系数准则,选取包含故障特征信息较丰富的分量进行MED滤波处理以消除噪声影响,凸显故障特征信息。最后对降噪后的信号进行Hilbert包络解调分析,即可从包络谱中准确地识别齿轮故障特征频率。通过仿真信号和齿轮箱实验数据对所提方法进行了验证,结果表明,该方法能够有效地降低噪声的影响,准确地提取齿轮早期故障信号中微弱的特征信息。 相似文献
10.
针对含噪信号的有效奇异值个数难以确定的问题,提出了一种改进的奇异值分解降噪方法——奇异值累积法。该方法通过计算奇异值的实际下降值与奇异值平均下降速度累积量的差值,并取该差值最大值点的位置作为有效奇异值的分界点来确定有效奇异值的个数。在此基础上,提出了一种基于奇异值累积法与快速谱峭度的滚动轴承故障诊断方法。采用奇异值累积法对原信号进行降噪处理,然后利用快速谱峭度确定滤波器中心频率及带宽,通过分析频段包络谱中明显的频率成分来诊断故障。该方法可以有效去除信号中的噪声,使得到的峭度值所反映的故障冲击更接近实际情况。对含内圈、外圈故障的滚动轴承实验数据进行分析,实验结果表明,相比快速谱峭度的故障诊断方法,该方法具有更好的故障识别效果。 相似文献
11.
12.
针对旋转机械中滚动轴承早期信噪比较低的故障特征提取困难问题,提出了一种基于能量的变分模式分解(variational mode decomposition,简称VMD)模态数k优化选取方法,用以提取滚动轴承早期故障特征,同时避免了信号分解过分或不足。首先,对振动信号进行VMD预分解,分别在不同k值条件下计算分量信号能量与原始信号总能量;其次,根据基于能量的模态数k选取准则,确定最佳模态数值对信号进行VMD分解;最后,通过峭度准则选择分量进行信号重构,对其进行包络分析,提取故障特征频率。将该方法运用到实际故障信号中,有效提取出滚动轴承内圈微弱故障特征,实现了早期故障特征判别,具有一定的应用价值和实际意义。 相似文献
13.
针对滚动轴承故障信号具有的非线性和非平稳性,其故障特征难以提取的问题,提出一种奇异值分解(SVD)和局部均值分解(LMD)相结合的滚动轴承故障特征提取和诊断方法。首先,将轴承故障信号进行LMD分解得到若干PF分量;然后选取和原始信号相关度较大的PF分量,利用奇异值序列来构造其故障特征向量;最后,将得到的故障特征向量作为学习样本输入到支持向量机(SVM)中,对故障类型进行分类和识别。实验结果表明,LMD和SVD结合的故障特征提取方法,能有效提取滚动轴承不同状态下的故障特征,对不同故障状态做出准确分类。 相似文献
14.
针对机械故障振动信号时频特征提取问题,提出一种基于Hilbert谱奇异值的特征提取方法,并将其应用于轴承故障诊断。该方法首先利用经验模式分解方法将振动信号分解为若干个内蕴模式函数之和,接着对每个内蕴模式函数进行Hilbert变换得到振动信号的Hilbert谱,然后对Hilbert谱进行奇异值分解,得到反映机械状态特征的奇异值序列,最后利用奇异值作为特征向量,使用支持向量机进行轴承故障诊断。轴承正常、内圈故障、滚动体故障、外圈故障实测信号实验结果表明,该方法能有效地提取轴承故障振动信号特征。
相似文献
相似文献
15.
为充分利用振动信号进行故障辨识,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵判据的滚动轴承故障诊断方法。首先,对滚动轴承的振动信号进行EEMD分解获得若干个本征模态函数(intrinsic mode function,简称IMF),并根据一种IMF分量故障信息含量的评价指标(即峭度、均方差和欧氏距离)选出能够表征原始信号状态的分量进行信号重构;其次,利用奇异值分解技术对重构信号进行处理,结合信息熵算法求取其奇异值熵;最后,利用奇异值熵的大小判断滚动轴承的故障类别。用美国西储大学滚动轴承振动信号对所述方法进行验证的结果表明,相比传统的EMD奇异值熵故障诊断方法,本方法能够清晰的划分出滚动轴承不同工作状态的类别特征区间,而且具有更高的故障诊断精度。 相似文献
16.
针对滚动轴承振动信号降噪时,克服模式混叠、保证各频率成分完整性和独立性问题,提出最大类间方差-经验小波变换分解(maximum between-cluster variance-empirical wavelet transform,简称MBCV-EWT)与奇异值差分谱相结合的信号降噪方法。首先,针对传统区间划分的不确定性问题,提出MBCV-EWT信号分解方法,通过最大类间方差对信号频谱自适应划分,并在每个划分区间上构建带通滤波器;其次,针对分解分量冗余,提出脉冲指标作为调幅-调频分量筛选准则,选取最优的分量用于降噪;最后,对最优调幅-调频分量进行奇异值分解,根据其差分谱重构分量并实现降噪。仿真及实验结果表明,该方法能够实现频谱自适应划分,有效克服模式混叠等问题,保证分解得到的各成分主频独立且完整,调幅-调频分量筛选准确,降噪效果明显,为故障识别和预测奠定研究基础。 相似文献