首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用自蔓延高温合成结合准热等静压技术(SHS/PHIP),在H13钢表面成功制备了TiC/Ni梯度功能涂层,采用XRD和SEM-EDS对涂层进行物相分析和微观组织观察,采用显微硬度测定和冲击试验对涂层性能进行检测。结果表明,涂层的主要物相为TiC和Ni基固溶体,原位生成的TiC颗粒细小且分布均匀,与Ni结合成紧密的TiC/Ni金属陶瓷结构。表面涂层显微硬度(HV_(0.05))为857.94,涂层与基体结合良好。  相似文献   

2.
利用自蔓延高温合成结合准热等静压技术(SHS/PHIP),在H13钢表面成功制备了TiC/Ni梯度功能涂层。在700℃铝液中对涂层进行0.5h和2h的静态热熔损试验,采用XRD分析熔损涂层的物相,采用SEM-EDS观察熔损涂层的组织并分析成分。结果表明,熔损涂层的主要物相为TiC、Ni、TiO_2和AlNi_3。涂层表层失效原因为Ni粘结相被浸蚀以及TiC骨架结构被氧化。涂层内部以侵蚀Ni粘结相为主,TiC骨架仍保持原有组织结构。TiC耐铝液浸蚀性能强于Ni粘结相。  相似文献   

3.
采用真空热压法制备出铁基表面Ni3Al涂层、TiC/Ni3Al涂层及TiC/Ni3Al-Ni3Al双层涂层,研究了不同涂层的微观结构及相组成,并用洛氏硬度计对涂层剖面进行了硬度测试。结果表明:TiC/Ni3Al-Ni3Al双层涂层结合了Ni3Al涂层、TiC/Ni3Al涂层两者的优点。表层涂层的微观组织为TiC颗粒较为均匀的分布在Ni3Al基体上,组织纯净、致密,过渡层Ni3Al相与表层涂层及钢基体之间均为良好的冶金结合。TiC/Ni3Al-Ni3Al双层涂层既维持了TiC/Ni3Al涂层的高硬度,又实现了从表层至基体之间性能的梯度过度。  相似文献   

4.
采用铸造反应合成技术制备出TiC/Ni3Al表面复合涂层材料,研究了涂层的物相、组织和界面形态,测试了涂层的硬度和耐磨性。结果表明:Ti-C-3Ni-Al体系反应完全,产物为TiC和Ni3Al。表面复合涂层中直径为1~3μm的TiC颗粒呈球形镶嵌在Ni3Al基体上,随着TiC含量的提高,颗粒尺寸略有长大、分布更均匀、涂层更致密,且涂层与钢基体界面为良好的冶金结合,随TiC含量的变化而界面呈现出不同的形貌,在TiC含量〈45%时,涂层为一整体,从涂层到界面处Ni、Al、Ti、Fe元素呈梯度变化;在TiC含量≥45%时,涂层出现了分层现象。随着涂层中TiC含量的增高,材料的硬度和耐磨性提高,表面复合涂层的硬度和耐磨性均明显高于钢基体。  相似文献   

5.
利用Ni60自熔合金粉末、TiFe粉、石墨、CaF_2和稀土经适当比例混合后采用激光熔敷技术制备TiC/Ni基涂层,同时研究对熔敷涂层宏观形貌、显微组织、微观形貌、物相结构及硬度的影响。结果表明:经激光熔敷可在镍基涂层中形成陶瓷硬质相TiC,熔敷涂层表面光滑平整;熔敷层底部与基体的结合处有一条白亮带,熔敷层组织由Ti C,Fe3Ni,NiO等相组成,TiC颗粒以球状、团聚状和花瓣状分布于(Ni,Fe)固溶体;熔敷层硬度分布较均匀,硬度为HV_(0.2)550~HV_(0.2)650,明显高于基体硬度HV0.2240~HV0.2260。  相似文献   

6.
采用铸造反应合成技术在钢铁表面合成TiC/Al3Ti金属间化合物基复合材料涂层。研究了涂层的物相、组织和界面形貌,测试了涂层的硬度分布并对涂层的形成机理进行探讨。结果表明:在熔融铁液作用下,Al-Ti-C体系反应完全,制备出TiC颗粒增强金属间化合物基表面复合涂层。TiC颗粒均匀地镶嵌在Al3Ti基体上,涂层致密。当TiC含量较少时,TiC呈条状;随着TiC含量的增加,TiC尺寸逐渐减小,且由长条状向粒状转化。涂层与铁基体界面为良好的冶金结合,从涂层到界面处Al、Ti、Fe、C元素呈梯度变化。涂层的硬度明显高于基体,且随着涂层中TiC含量的增加略有提高。  相似文献   

7.
在Ti-C-3Ni-Al体系中加入一定量的Mg作为添加剂,通过熔体内自蔓延工艺原位制备了 TiC/Ni3Al复合涂层.利用DSC、XRD,SEM和EDS分析Mg对体系自蔓延过程、热爆产物成分及其显微结构和复合涂层形貌的影响,测试了复合涂层的显微硬度分布、室温和高温耐磨性.结果表明,加入质量分数为2%的Mg可以有效地净化颗粒表面,降低反应开始温度和缩短反应时间,促进TiC/Ni3Al涂层的形成及与基体的结合;所得涂层在1 μm内的TiC颗粒均匀分布在Ni3Al中,涂层与基体呈致密的冶金结合,硬度从涂层到基体呈梯度分布,其高温耐磨性明显高于H13钢.  相似文献   

8.
反应电火花沉积合成TiC/Ti复合涂层研究   总被引:1,自引:0,他引:1  
利用DZ-1400型电火花沉积/堆焊机,以高纯石墨为电极,在TC4钛合金基体表面制备了厚度为70~110 μm的TiC增强金属Ti基复合涂层.利用SEM、XRD、EDS、AES和XPS等检测手段分析了涂层的形貌、组织、物相和化学组成,利用显微硬度计测试了涂层截面显微硬度.结果表明:涂层主要由TiC、Ti和C相组成,TiC是电极材料与基体材料反应形成的新相,是涂层的主要组成相;涂层组织致密、均匀、连续,涂层与基体形成良好的冶金结合;涂层硬度呈梯度变化,随着距表面距离的增大而减小,涂层最大硬度是基体的5.7倍.  相似文献   

9.
以Ti粉、B4C粉和蔗糖(碳的前驱体)为原料,采用反应火焰喷涂技术在钢基体表面制备了TiC-TiB2复相陶瓷涂层,研究了反应火焰喷涂工艺参数(喷涂距离、送粉气压力和喷涂团聚粉的预热温度)对涂层孔隙率和显微硬度的影响.结果表明,在一定条件下,随喷涂距离增加、送粉气压力增大、喷涂粉体预热温度升高,涂层的孔隙率和显微硬度均分别表现出减少和增加的趋势.正交试验结果表明,Ti-B4C-蔗糖体系制备TiC-TiB2涂层最佳工艺条件是喷涂距离为220 mm,送粉气压力为0.3 MPa,团聚粉预热温度为240℃.涂层主要由TiC0.3N0.7、TiB2与TiO2相及孔隙组成,其中TiC0.3N0.7-TiB2为涂层的主相,TiO2为副产物相.涂层与基体之间既有机械结合,又有冶金结合.  相似文献   

10.
以蔗糖为碳源,采用前驱体热分解技术制备Ni-Ti-C系反应热喷涂混合粉末,通过氧乙炔火焰喷涂技术合成并同时沉积原位TiC颗粒增强的Ni基合金复合涂层.利用XRD和SEM研究混合粉末和涂层的相成分和组织结构,分析TiC/Ni复合涂层的硬度和耐磨性.结果表明:反应火焰喷涂TiC/Ni复合涂层主要由TiC和Ni基体组成,并含少量的Ni3Ti和Ti3O5;涂层由复合强化片层相瓦叠加而成,复合强化片层中TiC颗粒均匀分布于Ni基体中,TiC颗粒呈球形,粒度达到亚微米级:涂层具有较高的硬度和耐磨性,复合强化片层显微硬度为FIV0.21433,涂层的耐磨性能远优于基板材料45号钢和对比涂层Ni60的耐磨性.  相似文献   

11.
分别以TiC粉和Ti+C粉为原料,采用外加法和原位法制备了TiC/Ni激光熔覆涂层,分析了TiC生成方式对涂层物相组成、微观组织、硬度和磨损性能的影响。结果表明,涂层的物相组成不受生成方式的影响;但Ti+C质量分数高于30%时,原位法涂层无法成型,而外加法可获得40%TiC的涂层。外加法涂层中TiC以原料TiC为主,少量溶解析出的结晶TiC;而原位法涂层中TiC全部为结晶析出,分布更加均匀,颗粒细小,枝晶数量增多。原位法涂层的平均硬度和耐磨性均优于相同TiC含量的外加法涂层;涂层中TiC含量(质量分数)由20%增至30%时,涂层硬度升高,耐磨性下降,生成方式引起的磨损性能差异由5%降至0.6%。  相似文献   

12.
利用脉冲Nd:YAG激光器在Cr12MoV模具钢表面熔覆了Ni/Ni-WC梯度涂层,通过X射线衍射仪、扫描电镜及能谱仪、高速往复摩擦磨损试验机以及白光干涉仪研究了梯度涂层的物相组成、耐磨性能和磨损形貌。结果表明:梯度涂层Ni60A+35%WC耐磨层物相主要由γ-(Ni, Fe)固溶体、WSi2相以及多种碳化物等硬质相组成。梯度涂层间以及涂层与基体间没有裂纹和气孔等缺陷生成,在界面处表现为良好的冶金结合。Ni60A+35%WC耐磨层平均显微硬度约为基体的1.7倍,Ni/Ni-WC耐磨涂层的磨损机理主要为疲劳磨损和磨粒磨损,基体的磨损机理主要为粘着磨损和磨粒磨损。  相似文献   

13.
电火花沉积法在铜电极表面制备TiB2/Ni涂层   总被引:2,自引:0,他引:2  
为了提高镀锌钢板用点焊电极的使用寿命,在铜电极表面涂覆过渡层Ni后沉积了TiB2涂层。通过SEM和XRD分析了Ni和TiB2涂层的物相和微观结构,并测试了其显微硬度。结果表明:由于材料具有良好的塑性,预涂覆的Ni涂层结构致密无裂纹,与基体Cu无分层;而TiB2涂层内存在裂纹和孔洞。通过过渡层Ni将TiB2涂层和基体Cu粘结起来,获得了较理想的涂层。随着电火花放电电容和电压的增加,TiB2的氧化程度增强,Cu和Ni大量扩散进入涂层表面,使TiB2/Ni涂层的硬度降低。由于TiB2良好的导电和导热性能及高的硬度,TiB2/Ni涂层电极在点焊时的塑性变形降低,寿命比无涂层电极和TiC涂层电极得到了明显提高。  相似文献   

14.
以化学纯镍粉、钛粉、铝粉、石墨粉为原料,采用燃烧合成方法制备了TiC/Ni3Al含孔预制件,用无压熔渗法制备了Ni3Al熔渗TiC/Ni3Al复合材料,研究了渗透温度和时间对TiC/Ni3Al复合材料的微观组织、硬度的影响,对无压渗透动力学进行了探讨.采用XRD和SEM分析了复合材料的相组成和微观结构.试验结果表明,无压熔渗法是制备致密的TiC/Ni3Al复合材料的有效方法,适当提高渗透温度,可大大缩短渗透时间.在完成渗透获得致密组织的前提下,渗透温度和渗透时间对TiC/Ni3Al复合材料的硬度无显著影响.渗透后复合材料的组成相为Ni3Al和TiC,颗粒结合良好.制备的Ni3Al/TiC复合材料的维氏硬度随TiC体积分数的增加而提高.  相似文献   

15.
以钛和石墨为原料,采用预置粉末结合高频感应加热熔化的方法在Ti6Al4V基体表面制备了原位自生TiC增强Ti基复合涂层,研究了涂层微观结构、物相构成、纳米力学性能及显微硬度。结果表明,感应熔覆钛基复合涂层表面平整,内部无裂纹和孔隙,与基体形成了冶金结合;熔覆过程中Ti与石墨充分反应生成TiC增强相,涂层基质相由α-Ti和少量β-Ti构成;TiC在涂层内分布均匀,其纳米压痕硬度和弹性模量高达22和280 GPa,较Ti6Al4V基体分别提高18和130 GPa,因此使复合涂层具有较高的硬度。  相似文献   

16.
利用同步送粉激光熔覆技术,在Ti811钛合金表面激光熔覆原位合成了TiC和TiB_2颗粒增强镍基复合涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)分析了熔覆层的显微组织和物相组成,利用显微硬度计测试了熔覆层的显微硬度。试验结果表明,激光熔覆涂层与基体呈冶金结合,涂层的物相主要由α-Ti、TiC、Ti_2Ni和TiB_2组成,其中TiC呈树枝晶状和花瓣状,TiB_2呈长条状。平衡状态下TiC以正八面体晶体结构存在,但熔体中存在的Ni元素会影响TiC平衡状态,使其最终呈现六边形形貌。稀土氧化物Y_2O_3的加入有利于促进晶粒细化,提高熔覆层组织均匀性及表面硬度。熔覆层的显微硬度显著提高,最高硬度为900HV0.5左右,约为基底硬度的2.25倍。  相似文献   

17.
利用激光熔覆技术在0Cr18Ni9奥氏体不锈钢表面制备了NiCrMn-TiC/WC-La_2O_3硬质合金耐磨涂层。采用X衍射仪、扫描电镜、能谱仪分析了熔覆层的物相组成及显微组织。测试了涂层的显微硬度,并在室温环境下对涂层进行干滑动摩擦磨损试验。结果表明:涂层主要由γ-(Ni,Fe)共晶化合物、未溶解的TiC和WC、原位生成的M_7C_3、TiC和(Ti,W)C、WC碳化物硬质相以及少量La_2O_3和Cr_3C_2组成。激光熔覆层的显微硬度大幅提高,显微硬度平均值为1172.74 HV,约为基体的3.48倍。熔覆层的摩擦系数和磨损率明显低于基体,磨损率约为基体的1/4。磨损试验过程中在涂层表面生成的大量含氧粘附层出现在涂层表面,有利于提高涂层的耐磨性。  相似文献   

18.
采用铸造工艺结合SHS技术制备TiC/Ni3Al表面复合涂层,研究了涂层的显微组织及其耐磨性.结果表明:表面复合涂层中直径为1 μm~2μm的TiC颗粒呈球形镶嵌在Ni3Al基体上,涂层致密.与钢基体为良好的冶金结合,界面随TiC含量的变化而呈现不同的形貌,在TiC含量<45%时,涂层为一整体;在TiC含量≥45%时,涂层出现了分层.表面复合涂层的HV值最高达8970 MPa,沿界面呈梯度变化;涂层具有高的耐磨性,在室温下约是钢基体的3~5倍;在400℃下是钢基体的20倍左右.  相似文献   

19.
采用铸造工艺结合SHS技术制备TiC/Ni3Al表面复合涂层,研究了涂层的显微组织及其耐磨性.结果表明表面复合涂层中直径为1 μm~2μm的TiC颗粒呈球形镶嵌在Ni3Al基体上,涂层致密.与钢基体为良好的冶金结合,界面随TiC含量的变化而呈现不同的形貌,在TiC含量<45%时,涂层为一整体;在TiC含量≥45%时,涂层出现了分层.表面复合涂层的HV值最高达8970 MPa,沿界面呈梯度变化;涂层具有高的耐磨性,在室温下约是钢基体的3~5倍;在400℃下是钢基体的20倍左右.  相似文献   

20.
利用激光熔覆技术在不同预热温度的钢轨基板表面制备了贝氏体涂层。利用光学显微镜(OM)、扫描电镜(SEM)观察了涂层的微观组织,应用X射线衍射仪研究了涂层中的物相分布,分析了涂层的显微硬度。结果表明:基板预热温度在280~380℃内,随预热温度的升高,涂层的原始奥氏体晶粒尺寸先增大后减小,预热温度为320℃时,涂层的奥氏体晶粒尺寸最粗大;原始奥氏体晶粒越粗大,相变后形成的贝氏体组织越少,马氏体/残留奥氏体(M/A)组织越多;M/A组织对涂层的硬度影响较为显著,基板预热320℃的涂层M/A组织最多,硬度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号