首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过拉伸力学性能测试,光学显微镜(OM)、扫描电镜(SEM)观察,X射线分析(XRD)和能谱(EDS)分析,研究了固溶时间对ZL210A合金微观组织及力学性能的影响。结果表明,随固溶时间延长,ZL210A合金中粗大的第二相不断溶入基体,晶粒尺寸不断增大,合金的力学性能随固溶时间延长先提高后降低。当固溶时间为11h时,合金的抗拉强度、屈服强度、硬度(HV)和伸长率都达到最大值,分别为321 MPa、142 MPa、85及14%。  相似文献   

2.
传统T6热处理的ZL114A合金难以满足航空航天领域日益提高的性能要求。为此,设计了新型低温-高温双级固溶热处理工艺,对比研究了单级固溶和双级固溶对后续时效组织和力学性能的影响。结果表明,双级固溶处理将基体中Mg溶解度从0.43%提高到0.54%(质量分数),从而显著提高Mg2Si时效析出相的数目密度,并将单级固溶难以消除的长条状π-Fe(Al8MgFe3Si6)相转变成球状β-Fe(Al5FeSi)相,同时提高共晶硅颗粒的圆整度。由此,ZL114A合金的力学性能得到明显改善,其中抗拉强度、屈服强度和伸长率分别达到347 MPa、287 MPa和7.7%。  相似文献   

3.
以反重力浇注的ZL114A合金为研究对象,研究固溶炉温均匀性对合金力学性能的影响。结果表明:在不考虑其它因素条件下,伸长率受到固溶炉温均匀性的影响更显著,硬度及抗拉强度受固溶炉温均匀性影响次之。因此,采用反重力铸造方式生产ZL114A合金时,可以将伸长率降低作为生产异常预警指标,并以伸长率为5.6%作为预警红线。  相似文献   

4.
通过力学性能测试、扫描电镜(SEM)、示差扫描量热法(DSC)和XRD分析等方法,研究固溶时间对2219铝合金组织和力学性能的影响。结果表明,当固溶温度为535℃,固溶时间不超过1.5 h时,随着固溶时间的延长,基体中含Cu结晶相回溶至基体,且不发生偏聚,提高了基体的过饱和度,有利于合金力学性能的提高;当固溶时间超过2 h时,含Cu结晶相发生偏聚长大,导致合金的力学性能特别是伸长率下降。因此,当固溶温度为535℃时,该合金适宜的固溶时间为1.5 h,之后经过(175℃×18 h)时效处理后,合金的抗拉强度Rm、屈服强度Rp0.2和断后伸长率A分别为393.5 MPa、305.9 MPa和8.7%。  相似文献   

5.
《铸造》2020,(4)
研究了少量Sr(0、0.2%、0.5%、1.0%)的加入对铸态Mg-4Zn合金组织和力学性能的影响,以及热处理对Mg-Zn-Sr合金显微组织与力学性能的影响。结果表明,添加0.5%Sr的铸态合金具有最佳的力学性能,其抗拉强度为161 MPa,屈服强度为82 MPa,伸长率为10.30%。合金经过440℃×18 h固溶处理后,第二相基本固溶进基体中,其抗拉强度为192 MPa,屈服强度为99 MPa,伸长率为14.77%。随着时效时间的增加,MgZn相数量增加,且弥散分布,时效8 h,合金性能较好,其抗拉强度为223 MPa,屈服强度为118 MPa,伸长率为12.06%。时效12 h,Mg_(17)Sr_2相开始大量析出,影响合金性能。  相似文献   

6.
研究了Zr对Al-Zn-Mg-Cu合金显微组织和力学性能的影响。结果表明,添加少量Zr可以细化合金铸态组织,并且在热挤压过程中抑制再结晶。在固溶时效过程中,可以促进第二相粒子的析出,从而使基体中析出均匀弥散第二相粒子。T6状态下,未加Zr的合金其抗拉强度仅为600MPa,伸长率为10.5%;而加Zr后其抗拉强度超过650MPa,伸长率达到12.3%。  相似文献   

7.
研究了Ce添加量分别为0.09%及0.23%的Al-4.15Cu-1.25Li-X高强铝锂合金薄板T6态时效(175℃时效)及T8态时效(5%冷轧预变形+155℃时效)时的微观组织和拉伸性能。结果表明,相比T6态时效,T8态时效时铝锂合金强度及伸长率均有所提高。T8态时效时,含0.23%Ce的铝锂合金强度及伸长率均低于Ce含量为0.09%的铝锂合金。Ce含量增加未改变铝锂合金中时效析出相的种类,主要强化相仍为T1相(Al_2CuLi)及θ'相(Al_2Cu),但其数量减少。微量Ce的添加可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,这些粒子在均匀化及固溶处理时均难以完全溶解。Ce含量增加,导致固溶基体中Cu含量降低,时效时含Cu析出相T1相及θ'相含量减少,铝锂合金强度降低。  相似文献   

8.
采用金相显微镜(OM)、差热分析(DSC)、X射线衍射(XRD)、拉伸试验机等,研究了固溶时效处理对大应变轧制2524铝合金板材显微组织及力学性能的影响。研究表明,轧制态2524铝合金中轧制面组织呈纤维状且存在大量的Al_2Cu和Al_2CuMg相。合金在455~495℃之间,固溶处理温度越高,时间越长,粗大的第二相溶解越充分。2524铝合金经495℃×60min固溶处理后,析出相基本溶解,2524铝合金的抗拉强度,屈服强度和伸长率分别为412.6 MPa、350.7 MPa和17.9%,合金经505℃固溶处理后,出现过烧组织特征,力学性能降低。合金经时效处理后强化相均匀析出,合金性能得到强化。合金经190℃×6h时效处理后,2524铝合金的抗拉强度、屈服强度和伸长率分别为464.6MPa、395MPa和22%。  相似文献   

9.
研究了Al-5Ti-B细化剂的类型、加入量和精炼工艺对ZL205A合金组织性能的影响。结果表明,Al-5Ti-B细化剂中TiB2相聚集分布时,会诱发细化效果的不均匀性,细化剂中的粗大Al3Ti相会残留于合金基体中,降低合金的力学性能;Al-5Ti-B细化剂在Ti加入量为0.25%时,ZL205A合金的细化效果良好且力学性能最佳,屈服强度、抗拉强度与伸长率分别可达378 MPa、455 MPa和8.9%;采用C2Cl6精炼时,细化剂中的TiB2颗粒会发生"中毒"现象,加剧TiB_2相的聚集。采用氩气精炼并控制静置时间可以保证TiB_2相的稳定性。  相似文献   

10.
研究了固溶-预冷变形-时效处理对Cu-0.1wt?-0.03wt%P引线框架铜合金导电率、强度、显微组织的影响.结果表明,在线固溶处理的合金最终处理态析出相密度较大,强度和电导率高;相同固溶处理和相同时效条件下,增加冷轧变形量,合金抗拉强度和伸长率下降,屈服强度则先降低后升高,电导率则随冷轧变形量增加单调升高.合金热轧后在线固溶-95%冷轧变形-500 ℃×2 h时效处理是比较好的工艺,在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为258 MPa、192 MPa、22.5%和86.0%IACS,合金的显微组织为固溶体和弥散相颗粒(主要是Fe3P和Fe2P),尺度在几到几十纳米之间.析出强化和亚结构强化是合金强化的主要原因.  相似文献   

11.
研究了固溶-预冷变形-时效处理对Cu-0.1wt?-0.03wt%P引线框架铜合金导电率、强度、显微组织的影响.结果表明,在线固溶处理的合金最终处理态析出相密度较大,强度和电导率高;相同固溶处理和相同时效条件下,增加冷轧变形量,合金抗拉强度和伸长率下降,屈服强度则先降低后升高,电导率则随冷轧变形量增加单调升高.合金热轧后在线固溶-95%冷轧变形-500 ℃×2 h时效处理是比较好的工艺,在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为258 MPa、192 MPa、22.5%和86.0%IACS,合金的显微组织为固溶体和弥散相颗粒(主要是Fe3P和Fe2P),尺度在几到几十纳米之间.析出强化和亚结构强化是合金强化的主要原因.  相似文献   

12.
采用常温拉伸试验、晶间腐蚀试验、SEM和TEM检测等手段,研究了固溶处理工艺对2A66铝锂合金显微组织、力学性能和晶间腐蚀性能的影响。结果表明:双级固溶比单级固溶的过饱和度更大,未溶第二相大幅减少,T6时效后晶内析出相(T1相和θ'相)数量增加,尺寸减小,晶界析出相由连续分布变为断续分布,合金的强度和抗腐蚀性能提升;高温预析出固溶在低温固溶阶段析出大量粗大第二相,时效强化减弱,强度显著降低;逐级固溶的过饱和度最大,未溶第二相基本消失,T6时效后晶内析出相细小弥散,晶界析出相间距增大,呈不连续分布,出现无沉淀析出带(PFZ),合金的抗拉强度、伸长率及最大晶间腐蚀深度分别为640.7 MPa、8.9%和39.15μm,即合金同时具有较好的力学性能和抗腐蚀性能。  相似文献   

13.
研究了不同混合稀土添加量对铸态及固溶态ZL301合金显微组织和力学性能的影响。结果表明,混合稀土能细化铸态合金的晶粒,形成Al-RE相,沿晶界不连续分布,起到晶界强化作用,从而提高了合金的抗拉强度和伸长率。当混合稀土添加量为0.5%、固溶处理工艺为435℃×16h时,ZL301合金的综合性能达到最佳。当混合稀土添加量为0.8%时,Al-RE相开始沿晶界连续分布,降低了晶界的结合强度,合金的强度和韧性下降。  相似文献   

14.
通过透射电镜(TEM与HRTEM)、室温拉伸测试、JMatPro模拟等手段,研究了0.4%与0.8%的Mn对高饱和度Al-8Zn-1.8Mg-1.4Cu合金锻件抗拉强度、屈服强度的影响。结果表明,当合金中含有0.4%与0.8%的Mn时,合金抗拉强度分别达到545、553MPa,较基体合金分别提高7.9%和9.5%,屈服强度分别达到448、469MPa,较基体合金分别提高16.3%和17.4%;向Al-8Zn-1.8Mg-1.4Cu合金中添加Mn元素,经过固溶时效热处理后合金中形成Al_6Mn析出相,Al_6Mn析出相以棒条状存在于晶粒内外,其数量随Mn含量提高而增多;固溶时效后,Al_6Mn析出相与铝基体以非共格形式存在,以弥散强化方式提高合金强度;另外,Mn原子会置换铝基体中的Al原子,导致面心立方铝基体晶格发生膨胀、晶格常数变大,产生晶格畸变,实现固溶强化。  相似文献   

15.
本文以ZL205A合金为研究对象,采用OM、SEM、TEM对铸件组织进行分析,研究了不同壁厚对铸件显微组织和力学性能的影响。结果表明,随着铸件壁厚增加,ZL205A合金冷却速率不断降低,导致合金晶粒尺寸增加。晶粒尺寸的增加,导致铸态条件下,合金的抗拉强度和伸长率随冷却速度的降低而降低,同时由于退火效应存在,屈服强度随冷却速率的降低略有增加。不同冷却速率的铸件经固溶淬火处理后,晶界的共晶组织几乎完全固溶于晶内,当冷却速率为7.4 K/s和2.0 K/s时,铸件的析出相密度和尺寸接近;当冷却速率为0.5 K/s时,铸件析出相密度降低,尺寸增加。合金的抗拉强度、屈服强度和伸长率均随铸件冷却速率的降低而降低,其中冷却速率为0.5 K/s的铸件孔洞缺陷显著增加但强度并未骤然降低。  相似文献   

16.
采用金相显微镜、透射电镜、扫描电镜及拉伸性能在测试研究0.11%Ce(质量分数)添加对一种Al-Cu-Li系高强铝锂合金薄板T8态时效(5%冷轧预变形+155℃时效)组织和力学性能的影响。结果表明:0.11%Ce添加明显降低合金强度,但伸长率略有增加。微量Ce添加可细化铸态晶粒组织及固溶再结晶晶粒组织;而且微量Ce添加未改变铝锂合金中时效析出相的种类,主要强化相仍然为T1相(Al_2CuLi)及θ′相(Al_2Cu),但其数量减少。铝锂合金中添加微量Ce,凝固时可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,在后续均匀化及固溶处理时均难以完全溶解,导致固溶基体中的Cu含量降低,时效时含Cu析出相T1相及θ′相含量减少,合金强度降低。  相似文献   

17.
研究了固溶温度及冷却速度对Ti3510钛合金锻件的显微组织及力学性能的影响。XRD结果表明,固溶后空冷的合金相组成主要为α相及β相,固溶后水冷的合金相主要为α'相及β相,且有少量的α'相析出。显微组织表明,合金微观组织形貌对冷却速度十分敏感,固溶后空冷的合金主要为细小的针状或点状析出物,固溶后水冷的合金主要为板条状次生相。室温拉伸结果表明,随着固溶温度的升高,空冷后的合金强度及塑性总体上缓慢提高,至800℃处理时强度达到最高,抗拉强度达到998 MPa,伸长率为10%。水冷处理后合金强度下降,但塑性提高。850℃固溶后水冷,合金的抗拉强度达到812 MPa,伸长率为25%。  相似文献   

18.
《铸造技术》2017,(12):2854-2857
研究了固溶和时效热处理对锻态7075合金显微组织、硬度和拉伸力学性能的影响,并对断口形貌进行了观察。结果表明,锻态7075合金中的第二相主要为Al7Cu2Fe、η(Mg Zn2)和S(Al2Cu Mg)相;经过固溶处理后,晶界处η(Mg Zn2)相已经回溶至基体中;固溶温度为480℃时组织中存在Al7Cu2Fe相,而η(Mg Zn2)和S(Al2Cu Mg)相消失;随固溶温度升高,合金显微硬度先上升后减小,在470℃时显微硬度最高;随固溶时间延长,显微硬度先上升后降低,在240 min时硬度最大;延长时效时间,合金抗拉强度和屈服强度都有所提高,而断后伸长率略有降低;7075合金经470℃×240 min固溶以及125℃×24 h时效后可以获得良好的强度和塑性。  相似文献   

19.
以选区激光烧结(SLM)成形ZL114A合金为研究对象,进行了SLM成形ZL114A合金的退火和深冷处理工艺试验,主要研究了退火温度和深冷保温时间对SLM成形ZL114A合金微观组织和力学性能的影响。结果表明,230℃×2h退火处理后,SLM成形ZL114A合金的伸长率提高了18.0%,抗拉强度下降了2.9%;300℃×2h退火处理导致合金的抗拉强度和伸长率下降了28.2%和22.3%;合金退火态的微观组织表现为α-Al与Si相交界处存在大量的孔洞。而深冷处理(-196℃)对SLM成形ZL114A合金的力学性能有明显改善,其中深冷保温36h对力学性能提升效果最佳,相较沉积态,其抗拉强度提高了18.9%,伸长率提高了23.0%;其深冷态的共晶Si在基体中分散更均匀,并转为棒状结构,使合金的塑性得到明显提高。  相似文献   

20.
对固溶时效的Mg-11Li-3Al-xZr(x=0、0.1)合金挤压板进行了轧制,采用OM、XRD分析了轧制前后合金显微组织的变化,通过拉伸试验测试了不同变形量下合金的拉伸性能。结果表明,固溶时效合金组织主要由β-Li和少量颗粒状化合物组成,轧制过程中合金内部析出α-Mg、θ-MgLi_2Al以及AlLi等相,并且随着轧制进行,θ-MgLi_2Al相逐渐转变为AlLi相。随着轧制变形量增大,合金晶粒尺寸变大,固溶时效Mg-11Li-3Al-xZr合金的力学性能先升高后降低。Mg-11Li-3Al合金在60%冷变形量时综合性能最好(抗拉强度为242 MPa,伸长率为46%);Mg-11Li-3Al-0.1Zr合金在40%变形量下综合性能最佳(抗拉强度为255 MPa,伸长率为24%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号