首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘桂超  王月雷  李玉满  陈隆波  陈微 《铸造》2023,(9):1158-1162
研究了挤压铸造过程中挤压压力对ZL109过共晶铝合金组织和性能的影响。试验选择在200 t液压机上进行挤压铸造,设计挤压压力为75 MPa、95 MPa、115 MPa进行评估。结果表明,挤压铸造工艺改善了铸件组织,提高了合金的力学性能。挤压压力的变化对合金的初生Si、共晶组织的尺寸、体积分数和力学性能影响显著。在试验范围内,挤压压力为115 MPa下的初生Si颗粒直径相较于75 MPa与95 MPa分别减小了23.5%和28.4%、共晶Si的平均尺寸分别减少了22.1%和50.3%;α-Al的尺寸分别降低了13.6%和18.3%;挤压压力从75 MPa增加到95 MPa,合金的抗拉强度、屈服强度、伸长率和硬度分别提高13.9%、22.6%、19.9%和9.4%;压力从95 MPa提高到115 MPa,抗拉强度和伸长率分别降低2.4%和6.6%。  相似文献   

2.
采用光学显微镜及透射电镜研究了挤压变形Mg-5.5Zn-1.7Nd-0.7Cd-0.5Zr镁合金在不同热处理条件下的组织和性能。结果表明,经T6(固溶420℃×20h+时效200℃×20h)处理后,合金的抗拉强度和屈服强度低于挤压态,而经过T5(时效120℃×15h)处理后,高于挤压态;在T5工艺条件下,合金具有较好的力学性能,其抗拉强度σb=349MPa,屈服强度σ0.2=315MPa,伸长率δ=13%。  相似文献   

3.
以挤压铸造A356.2铝合金发动机悬置支架为研究对象,对支架铸态组织、不同固溶时效热处理后的显微组织与力学性能,以及内部缺陷进行了分析研究。结果表明,挤压铸造A356.2铝合金铸态组织由α-Al相和Al-Si共晶组成,晶粒尺寸约为148μm,二次枝晶间距约为20μm;经固溶时效处理后,共晶Si一部分溶入α-Al相中,一部分以粒状、球状形式分布在α-Al晶界;固溶时间、时效温度和时效时间对A356.2合金的力学性能有一定影响。试样经过535℃×6h固溶+8min水淬+170℃×6h时效处理后,抗拉强度为340.5MPa,屈服强度为274.5MPa,伸长率为10%,满足支架整体力学性能要求。  相似文献   

4.
采用金属型铸造制备Al-11Si-2.5Cu-Mg合金,利用金相显微镜及拉伸试验等方法,研究了热处理对Al-11Si-2.5Cu-Mg合金组织及性能的影响。结果表明,最佳热处理工艺为:510℃×7h固溶+160℃×8h时效,此时合金的抗拉强度和伸长率分别达到385 MPa和8.2%。经热处理后,铸态组织的点状共晶Si相被球化,大部分Si质点都比较圆整,并在α固溶体上析出细小而弥散的Al2Cu、Mg2Si中间强化相,使合金强度得到提高。  相似文献   

5.
采用低压铸造工艺制备了Mg-10Gd-3Y-0.7Zr合金,利用OM、SEM、EDS、DTA等手段研究了合金在热处理前、后的微观组织演变,并对其热处理工艺进行优化,以提高合金的综合力学性能,并结合组织变化分析了合金的热处理强化机制。结果表明,Mg-10Gd-3Y-0.7Zr合金的铸态组织主要由α-Mg初生相和Mg24(Gd,Y)5共晶相组成,且Mg24(Gd,Y)5共晶相呈网状分布在晶界上。热处理后,连续分布的Mg24(Gd,Y)5相消失,主要为α-Mg和颗粒状Mg5(Gd,Y)相。在520℃×14h+230℃×20h热处理效果最佳。经过520℃固溶14h后,合金强度变化不大,但是伸长率由5.5%变为13.4%,提高了144%。230℃时效处理后,合金的综合力学性能优异,抗拉强度和屈服强度达到307.8 MPa和200.4 MPa,伸长率为7.2%,较热处理前分别提高了41%、38%和31%。  相似文献   

6.
设计了一种Al-Zn-Cu-Mg高强铝合金,采用金相分析、力学性能测定,断口扫描等,对该合金的均匀化和固溶工艺进行了研究。结果表明:合金铸态组织中存在非平衡共晶相,经430℃×12 h+475℃×24 h双级均匀化处理后非平衡共晶化合物基本消失,Zn元素扩散基本结束,均匀化效果好。合金经470℃固溶处理60 min时,综合力学性能最佳,抗拉强度达到623 MPa,屈服强度达到571 MPa,伸长率为12.17%。  相似文献   

7.
研究Sr和P变质对挤压铸造Al-17.5Si合金组织与力学性能的影响。试验结果显示:挤压铸造对过共晶Al-17.5Si合金的组织产生了显著的影响,共晶组织明显细化,初生Si相的数量减少并细化,同时力学性能显著提高。Sr变质后的Al-17.5Si合金在压力下凝固,共晶Si相进一步细化,变为十分细小的纤维状,合金的抗拉强度和伸长率比重力铸造分别提高了59%和328.7%。当P变质处理Al-17.5Si合金挤压铸造成形后,合金组织中却出现了大量的粗大初生Si相颗粒,使得合金的力学性能呈现了降低的趋势。由此确定,挤压铸造过共晶Al-Si合金的最佳变质处理为Sr变质,P变质不适用于挤压铸造成形的过共晶Al-Si合金。  相似文献   

8.
通过对添加B和Sb细化变质的ZL101合金进行固溶和时效处理,研究了热处理对合金显微组织和力学性能的影响。结果表明,添加B和Sb后,共晶Si由粗大片状变成细小针状,长条状初生α-Al等轴化。在相同热处理工艺下添加B和Sb的合金组织中共晶Si充分球化,尺寸分布更均匀,基体中析出时效相更多更弥散,此时合金显微硬度(HV)由未细化变质的102.4提高到114.6。当热处理工艺为540℃×6h固溶+190℃×5h时效时,添加B和Sb的合金抗拉强度和伸长率最高,分别为332.8 MPa和11.73%,相比于未细化变质合金,提高了21.6%和90.7%,并且断口中出现大量均匀细小的等轴状韧窝结构。  相似文献   

9.
采用显微组织观察和拉伸性能测试的方法,研究了不同热处理条件对Mg-Gd-Y-Nd-Zr挤压合金组织和力学性能的影响。实验结果表明:T5为最佳的热处理方法。挤压态Mg-Gd-Y-Nd-Zr合金经T5(520℃×10 h固溶+225℃×24 h人工时效)处理后,抗拉强度和屈服强度大幅度提高,分别达到375 MPa和346.8 MPa,但伸长率降低。  相似文献   

10.
采用拉伸性能和硬度测试、光学显微镜、扫描电镜和X射线衍射仪等手段研究不同Si含量对挤压铸造Al-5.0Cu-0.6Mn-0.7Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0时,随着Si含量的增加,凝固后期形成的富铁相阻止液相补缩,形成缩松组织,导致合金的抗拉强度、屈服强度和伸长率都下降;当挤压压力为75MPa时,随着Si含量增加,缩松组织消失,虽然细小和分散的α-Al15(Fe Mn)3(Si Cu)2相和Al2Cu相数量增多,但Al6(Fe Mn Cu)相消失,有利于晶界强化和阻止裂纹的扩展,使得合金的抗拉强度和屈服强度增加;虽然富铁相数量的增加使得合金伸长率降低,但挤压铸造工艺减缓了伸长率降低的趋势。当挤压压力为75 MPa和Si含量为1.1%(质量分数)时,合金的综合力学性能最好,其抗拉强度为232 MPa,屈服强度为118 MPa,伸长率为12.4%。  相似文献   

11.
采用铸锭冶金法制备高Zn含量(质量分数为10.8%)的7075铝合金,用金相显微镜、扫描电镜和能谱分析等分析了提高Zn元素含量后7075铝合金显微组织的变化,并研究了不同回归热处理对该合金力学性能的影响。结果表明,Zn元素质量分数提高到10.8%时,合金晶粒得到细化,在T6状态下,合金抗拉强度达到650 MPa,屈服强度为620 MPa,其抗拉强度和屈服强度较常规7075铝合金分别提高了10.2%和13.8%,但伸长率较低,仅为2.8%;含10.8%Zn的7075铝合金经优化后的回归热处理(120 ℃×12 h+190 ℃×10 min+120 ℃×16 h)后,抗拉强度为714 MPa,屈服强度为690 MPa,伸长率为8.3%,其较T6状态下分别提高了9.8%、11.3%及196%。  相似文献   

12.
通过EDS、OM、SEM、TEM和常温拉伸等分析测试手段对挤压铸造Al-Zn-Mg-Cu-Zr-Sc合金的组织特征及在不同热处理制度下的组织状态与力学性能进行了研究.结果表明,挤压铸造Al-Zn-Mg-Cu-Zr-Sc合金经460℃×24h+470℃×8h+480℃×2h三级强化固溶、120℃×24h单级时效处理,抗拉强度达到597MPa,伸长率达到13.2%,实现了较好的强韧性配合.  相似文献   

13.
研究了不同二次时效热处理对Al-Zn-Mg-Cu合金型材组织性能的影响。结果表明,采用135℃×6 h+85℃×120 h处理后,Al-Zn-Mg-Cu合金型材的抗拉强度、屈服强度、伸长率和电导率分别为614.5 MPa、561.5 MPa、14.3%和34.2%IACS,相比T6态,合金的屈服强度和伸长率显著提高。合金中主要沉淀相为η’和少量大尺寸的GP区。135℃×6 h+85℃×120 h+135℃×20 h处理后,Al-Zn-Mg-Cu合金型材的抗拉强度、屈服强度、伸长率和电导率分别为616 MPa、586 MPa、12.8%和36.7%IACS,相比T6态,合金的屈服强度和抗应力腐蚀性显著提高。合金中主要沉淀相为η’相和少量的η相。  相似文献   

14.
ZL114A合金是我国自主研发的铸造亚共晶Al-Si合金,变质共晶Si是提高其室温综合拉伸性能的重要方法之一。利用室温拉伸试验、扫描电镜观察研究了Sb元素对金属型铸造条件下ZL114A合金铸态和热处理态组织以及性能的影响。结果表明,对于铸态的ZL114A合金,Sb的加入将共晶Si由板片状变质为纤维状或颗粒状;经过热处理的ZL114A合金,Sb的加入使共晶Si的长径比变小,球化程度更高。在金属型铸造条件下,Sb元素能够提高ZL114A合金铸态和热处理态的室温综合拉伸性能,热处理后添加Sb的合金的抗拉强度和伸长率远远高于我国航空标准所要求达到的值。综合考虑ZL114A合金铸态和热处理态的共晶Si相形貌以及室温拉伸性能,Sb元素的最佳含量(质量分数)为0.09%。  相似文献   

15.
研究了退火温度对等通道转角挤压(ECAP)Fe17.80Mn4.73Si7.80Cr4.12N i合金力学性能及显微组织的影响。结果表明,等通道挤压工艺能显著提高合金的屈服强度和抗拉强度,两道次挤压后合金的屈服强度达到880 MPa,比固溶态高660 MPa。退火温度从300℃升高到600℃时,合金屈服强度和抗拉强度降低,伸长率升高。挤压后经700℃×30 m in退火后,材料的伸长率达到40%,屈服强度达到426 MPa,再结晶基本完成,晶粒尺寸仅为0.3~2.5μm。细晶强化是该合金强度和伸长率提高的主要原因。  相似文献   

16.
采用低压铸造制备了WE43镁合金,使用OM、SEM、EDS研究了热处理前后合金的显微组织及元素分布情况,并对其力学性能进行测试,分析热处理对其力学性能的影响。结果表明,WE43镁合金铸态组织主要由α-Mg基体和晶界上的Mg24Y5共晶相组成。经过520℃×10h+225℃×14h热处理后,WE43镁合金主要由α-Mg基体、方块相团簇、少量残余Mg24Y5共晶相及针状的时效析出相组成。与铸态合金相比,热处理后WE43镁合金的抗拉强度和屈服强度显著提高,分别达到305.9 MPa和191.8 MPa,但伸长率下降至3.1%。  相似文献   

17.
对含3.47%Si、0.54%Mg、0.33%Cu和0.39%Cr(质量分数)的低硅Al-Si-Mg铸造铝合金进行了固溶处理和时效。固溶处理工艺:分别在510、520、530、540℃保温2、4、6和8 h水冷;时效温度为170、180、190℃,保温时间2、4、6和8 h。检测了合金的显微组织和力学性能。结果表明:该铸造铝合金的最佳热处理工艺为540℃×4 h水冷固溶处理,随后180℃×6 h时效处理,经此工艺热处理的低硅Al-Si-Mg铸造铝合金的抗拉强度为365.9 MPa,屈服强度为313.9 MPa,断后伸长率为9.3%。  相似文献   

18.
采用流变挤压铸造制备了Al-5Zn-2Mg-1Cu-0.2Sc合金,通过拉伸试验、SEM和TEM等方法研究了浇注温度对半固态浆料、流变挤压铸造合金组织和力学性能的影响。结果表明,随着浇注温度降低,半固态浆料和流变挤压铸造合金初生α-Al相形貌逐渐转变为近球形,在晶界附近析出的第二相分布越来越均匀,平均晶粒尺寸减小,圆整度增加。当浇注温度为700℃时,半固态浆料初生相尺寸最小,约为35μm,平均形状因子约为0.49,流变挤压铸造后合金平均晶粒尺寸约为43μm。流变挤压铸造合金的力学性能随着浇注温度的降低逐渐提升。合金经过470℃×10 h+500℃×2 h双级固溶后,大部分第二相溶于基体中。120℃×24 h时效处理后,合金的屈服强度为539 MPa,抗拉强度为612 MPa,伸长率为11%。  相似文献   

19.
变质后A356合金力学性能常常达不到工业使用要求,需通过热处理进一步强化。本文以Al-Sr-Y合金变质后的A356合金为研究对象,应用OM、SEM、拉伸试验机等仪器研究固溶和时效处理对变质后A356合金显微组织与力学性能的影响,以此探索出一种适用于变质后A356合金的热处理工艺。结果表明,经过540℃×4 h+175℃×6 h热处理后,共晶硅更加圆整和均匀,合金中强化元素Mg能够充分溶入基体,有利于时效过程析出强化相。合金在热处理后抗拉强度、屈服强度、伸长率分别为303.5、223.1 MPa、9.5%,与铸态变质合金相比,分别提升了57.7%、99.7%、20.3%。此时,断口中韧窝尺寸增大,合金由脆性断裂转变成韧性断裂,塑性增强。  相似文献   

20.
采用喷射成形和挤压工艺制备了8009耐热铝合金,通过金相显微镜、扫描电镜和力学性能测试等试验,对挤压件的组织和性能进行了分析。结果表明:挤压态合金在室温下的抗拉强度达到415MPa,屈服强度达到345MPa,伸长率达到22.5%;在250℃时,合金抗拉强度为221MPa,屈服强度为208MPa,伸长率为13.33%。挤压态8009合金经400℃暴露24h后对合金的中温力学性能没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号