首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对Mg-Al合金晶粒细化的研究进展进行了综述。在理论研究方面,边-边匹配模型(E2EM)成功用于预测镁合金的异质形核颗粒,相互依存理论清晰的表述了镁合金晶粒的形核与长大过程,合金平均晶粒尺寸由无形核区大小和异质形核颗粒平均间距共同决定;在实验研究方面,高纯Mg-Al合金的天然形核机制来源于Al-C相的异质形核作用,而Mg-Al合金中含有Fe和Mn元素时,Al-C相的异质形核作用被破坏,Al-Fe-Mn三元相取代Al-C相起到异质形核作用。对比了Mg-Al合金不同细化方式的优缺点,指出过热处理和C细化方法是目前Mg-Al合金最有效的细化方法,并对今后Mg-Al合金晶粒细化研究的方向进行了展望。  相似文献   

2.
对Mg-Al合金晶粒细化的研究进展进行了综述。在理论研究方面,边-边匹配模型(E2EM)成功用于预测镁合金的异质形核颗粒,相互依存理论清晰的表述了镁合金晶粒的形核与长大过程,合金平均晶粒尺寸由无形核区大小和异质形核颗粒平均间距共同决定;在实验研究方面,高纯Mg-Al合金的天然形核机制来源于Al-C相的异质形核作用,而Mg-Al合金中含有Fe和Mn元素时,Al-C相的异质形核作用被破坏,Al-Fe-Mn三元相取代Al-C相起到异质形核作用。对比了Mg-Al合金不同细化方式的优缺点,指出过热处理和C细化方法是目前Mg-Al合金最有效的细化方法,并对今后Mg-Al合金晶粒细化研究的方向进行了展望。  相似文献   

3.
第二相对Mg-Ca-Sn镁合金铸态组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了含有不同第二相的金属型铸造Mg-Ca-Sn镁合金的显微组织和力学性能。结果表明:在合金中Ca和Sn单独存在可以在一定程度抑制铸态基体晶粒长大,Mg2Ca在晶界或枝晶界处连续分布,Mg2Sn呈颗粒状在晶界和晶内分布。Ca和Sn同时存在时,有CaMgSn在基体上呈半连续的点状或针状,在凝固过程中可作为α-Mg的异质形核核心,与单独添加相比,镁基体的铸态晶粒尺寸显著细化。运用边-边匹配模型分析了CaMgSn化合物与α-Mg之间的异质形核晶体学关系。晶粒细化后的Mg-Ca-Sn镁合金的显微硬度得到明显提高。  相似文献   

4.
Al-Ti-C中间合金对Mg-Al合金的晶粒细化作用   总被引:20,自引:4,他引:20  
制备了一种用于Mg-Al合金晶粒细化的Al-Ti-C中间合金。发现该Al-Ti-C中间合金可以有效地细化镁合金的晶粒,细化后的AZ61合金的抗腐蚀性能大大提高。分析认为,Al-Ti-C中间合金中起晶粒细化作用的是Al4C3和TiC的复合相。  相似文献   

5.
通过真空烧结制备出Mg-Al-C中间合金,发现该合金可以有效地细化Mg-Al系AZ91合金的晶粒,细化后的AZ91合金力学性能显著提高,粗大且易于聚集成团的Mg17Al12相得以消除;分析认为其细化机制是在镁合金熔体中形成了大量的结晶形核质点Al4C3或Al-C-O化合物.  相似文献   

6.
通过真空烧结制备出Mg—Al-C中间合金,发现该合金可以有效地细化Mg-Al系AZ91合金的晶粒,细化后的AZ91合金力学性能显著提高,粗大且易于聚集成团的Mg17Al12相得以消除;分析认为其细化机制是在镁合金熔体中形成了大量的结晶形核质点Al4C3或Al-C-O化合物。  相似文献   

7.
通过SEM和TEM等分析手段,研究了液-固反应制备的Al-Ti-C晶粒细化剂合金的组织特征与细化性能,并结合热力学分析,探讨了液-固反应合成机制。结果表明:Al-Ti-C晶粒细化剂合金组织中TiAl3呈枝晶状,TiC呈颗粒状,TiC为非化学计量比化合物,可表示为TiCx形式,x=0.5~0.8,其晶格常数为0.430~0.433nm,该晶粒细化剂对纯Al具有良好的组织细化作用;液-固反应中,在液-固界面处形成瞬时高温,从而达到Ti、C反应的热力学条件,Al-Ti-C合金的形成符合溶解-析出机制,并由三组基元反应构成。  相似文献   

8.
Mg—Al—C中间合金对AZ31镁合金的晶粒细化   总被引:1,自引:1,他引:0  
通过特种粉末冶金法制备了一种用于Mg-Al系合金晶粒细化的Mg-Al-C中间合金,初步分析了Mg-Al-C中间合金对AZ31镁合金的细化机理. 在该中间合金中,Al(C)固溶体分布在Mg颗粒的界面上.细化试验表明,该中间合金对AZ31(Mg-3Al-1Zn)合金有良好的细化作用.当加入3%该中间合金时,AZ31的晶粒尺寸由原来的850 μm减小到260 μm.  相似文献   

9.
为改善Mg-Al合金变质方法的不足,首先对常用的MgCO_3变质进行了热力学分析,并提出将CO_2气体直接通入AM60B合金熔体中,应能达到与MgCO_3变质相当甚至更优的晶粒细化效果。通过对比试验发现,MgCO_3可使AM60B合金的晶粒尺寸从未变质的213μm减小到113μm,硬度提高11.48%;用等量的CO_2气体处理,则使AM60B合金晶粒尺寸减小到了91μm,硬度提高了8.32%。通过SEM、EDS以及XRD分析表明,MgCO_3变质和CO_2气体变质具有相同的变质效果,这主要是熔体中的Al和C结合生成了Al4C3异质形核核心,进而细化AM60B合金的晶粒尺寸。  相似文献   

10.
Al、Zn元素对镁合金的晶粒细化机理分析   总被引:2,自引:0,他引:2  
从结晶游离的角度研究了Al、Zn元素对镁合金晶粒的细化机理,建立了一类可用于评估游离晶对合金组织细化能力的数学模型。分析结果表明,Mg-Al合金中的游离晶对合金组织的细化能力高于相同溶质浓度的Mg-Zn合金,并且溶质浓度越高,游离晶的细化能力差别越大,这可能是导致相同浓度的Mg-Al合金晶粒尺寸更加细小的主要原因。  相似文献   

11.
TiC/Al和SiC/Al中间合金对Mg-Al系合金晶粒的细化   总被引:5,自引:0,他引:5  
柳延辉  刘相法  李廷斌  边秀房 《铸造》2003,52(7):472-475
研制出两种新型的Mg-Al系合金晶粒细化剂——Al-4%TiC和Al-10%SiC中间合金。结果表明:这两种中间合金对Mg-Al系合金均有良好的晶粒细化作用。向AZ63合金中加入1%的TiC/Al中间合金可使其晶粒由原来的约2mm减小至250μm左右;向AZ31合金中加入0.5%的SiC/Al中间合金可使其晶粒由原来的约600μm减小至200μm左右。分析认为,表面覆有Al4C3过渡层的TiC和SiC颗粒可以作为α-Mg的结晶核心,同时SiC颗粒本身也可以作为α-Mg的异质结晶核心。大量异质结晶核心的存在是导致α-Mg晶粒细化的主要原因。  相似文献   

12.
采用熔炼铸造法制备了Mg-10Gd-xNd-0.7Al(x=0,1,1.5,2 mass%)合金,通过光学显微镜、X射线衍射仪、扫描电镜、能谱仪和电子拉伸试验机等设备研究了Nd对铸态Mg-10Gd-0.7Al合金组织和力学性能的影响,结合边-边匹配理论讨论了Nd对合金晶粒的细化机理.结果 表明:铸态Mg-10Gd-0....  相似文献   

13.
以Mg-3Al合金为研究对象,基于边-边匹配(E2EM)模型和相图计算,分析Al-X金属间化合物与α-Mg的晶面和原子错配度及其熔点,筛选Mg-Al-X合金中潜在的异质形核物相,探究筛选的Al2Nd和Al2Gd对Mg-3Al合金晶粒尺寸的影响,分析Nd和Gd对Mg-3Al合金物相组成和显微组织的影响,揭示Nd和Gd对Mg-3Al合金的细晶机理。结果表明:添加适量Nd和Gd元素可以有效减小Mg-3Al合金晶粒尺寸,提升合金屈服强度。当分别添加3%Nd、3%Gd(质量分数)后,Mg-3Al合金晶粒尺寸由(145±9)μm分别减小至(81±5)μm、(76±4)μm,分别降低了44%、48%,合金屈服强度由65 MPa提升至76~79 MPa,伸长率可达12.7%~16.5%。其细晶机理为Al2RE(Nd,Gd)颗粒作为α-Mg晶粒的异质形核质点细化晶粒。  相似文献   

14.
铸造Al-Si合金熔体处理——晶粒细化   总被引:4,自引:1,他引:3  
对亚共晶Al-Si铸造合金进行细化处理已成为一种基本操作。中间合金(Al-Ti,Al-Ti-B和Al-B合金)在亚共晶Al-Si铸造合金中与在工业纯铝和变形铝合金中的晶粒细化行为存在较大的差异。Al-3Ti-3B,Al-3B中间合金在Al-Si铸造合金中表现出优异的晶粒细化效应,Si与晶粒细化剂的交互作用在其中扮演着重要的角色。通过炉前对熔体进行快速热分析可以对晶粒细化效果和变质程度进行评价和预测,继而控制熔体处理的质量。对于亚共晶Al-Si铸造合金,归纳起来有四种晶粒细化机理:包晶反应理论、共晶反应理论、硼化物颗粒理论和超形核理论。仅对Al-Si铸造合金细化处理的最新进展、Si与晶粒细化剂的交互作用和晶粒细化机理进行综合评述  相似文献   

15.
研究了Zr含量对Mg-6Zn-xZr合金组织细化及力学性能的影响。结果表明,随Zr含量的增加,晶粒尺寸及二次枝晶间距明显减小,硬度和强度升高。采用边-边匹配模型分析了Zr及ZnZr与α-Mg之间的匹配晶面与晶向,并计算了错配度。结果表明,Zr与α-Mg存在5组晶面与晶向匹配对,ZnZr与α-Mg也存在[11 2-0]_(Mg)/[100]_(ZnZr)‖(0002)_(Mg)/(001)_(ZnZr)匹配对,因此Zr与_(ZnZr)均可作为非自发形核基底促进合金的形核并导致晶粒细化。  相似文献   

16.
稀土铒在Al-Zn-Mg合金中的存在形式与细化机理   总被引:25,自引:1,他引:25  
采用钢模铸造法制备了不同含量的稀土元素铒的Al-6Zn-2Mg合金, 利用金相组织观察、扫描电镜、透射电镜与能谱分析等分析测试手段, 研究了铒在合金中的存在形式与细化机理.结果表明: 铒在合金中主要有3种存在形式, 即固溶到基体α(Al)中、形成初生Al3Er相或以共晶化合物的形式分布在晶界、以细小Al3Er形式在晶内析出; 不同含量的铒能不同程度地细化晶粒, 当铒含量不超过0.25%时, 枝晶间距减少, 但晶粒没有明显细化, 当铒含量达0.4%时, 细化效果已非常显著, 随着铒含量的增大, 晶粒略为细小; 不同含量的铒对合金的细化机理取决于它在合金中的存在形式, 当铒含量较低时, 其细化机理符合传统的稀土铝合金细化机理, 当铒含量较高时, 由于在熔体中形成了初生Al3Er相, 这些Al3Er相可以作为非均质核心而使晶粒得到细化, 是合金的主要细化机理.  相似文献   

17.
Al-Ti-C与Al-Ti-B晶粒细化剂的Zr中毒机理   总被引:1,自引:0,他引:1  
通过采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)等对Al-Ti-Zr-C与Al-Ti-Zr-B试验合金中Al3Zr、Al3Ti、TiC或TiB2等第二相粒子结合情况的观察,研究晶粒细化剂的Zr中毒机理。结果表明:两种实验铝合金的凝固组织中Al3Zr均容易与Al3Ti结合形成聚积体,从而抑制了Al3Ti异质形核、细化晶粒的作用,出现所谓晶粒细化剂的Zr中毒现象;而TiC、TiB2粒子基本不与Al3Zr结合,但受Al3Zr的影响出现了团聚现象。根据边-边匹配晶体学模型(E2EM)计算表明:Al3Zr与Al3Ti、α-Ti具有多种可能的共格位向关系,而与TiC/TiB2粒子均只有一种可能的共格位向关系。母相-新相的共格位向关系的多少可作为晶粒细化剂设计的晶体学理论参考。  相似文献   

18.
锶元素加入到镁合金中能够起到变质第二相,显著细化晶粒以及提高其高温力学性能的效果,已被广泛应用于Mg-Al系镁合金中。综述了国内外在含锶Mg-Al系合金中的第二相研究现状,实验研究结果和第一性原理计算结果均表明,随着Sr含量的增加,Mg-Al系合金中将首先出现Al-Sr相(Al_4Sr相和/或Al_2Sr相),然后再出现Mg-Sr相((Mg,Al)_(17)Sr_2相)和/或Mg-Al-Sr三元相。但是,其中Mg-Al-Sr三元相的结构和类型尚存在争议。综述相图热力学计算以及第一性原理计算方法在含锶Mg-Al系合金中第二相研究方面的结果,将第一性原理计算与相图热力学模拟有机结合起来,可以获得更为准确的含锶镁合金二元或三元系相图。  相似文献   

19.
研究了Y含量对TC4合金铸造组织及力学性能的影响。结果表明,TC4合金中添加微量Y元素后大幅细化了TC4合金的晶粒,提高了合金的力学性能。在含Y元素的TC4合金基体中发现了Y2O3·2Ti O2析出物,Y元素在固液前沿的富集是Y2O3·2Ti O2析出及TC4合金组织细化的主要原因。当TC4合金中的Y元素含量为0.1%时,合金的细化效果最为明显,并获得了最佳的强度与塑性匹配。当合金中Y元素含量大于0.1%时,晶粒尺寸不再减小,合金的力学性能急剧降低。  相似文献   

20.
Al-TiC中间合金的制备及对AZ91合金铸态组织的细化效果   总被引:3,自引:0,他引:3  
韩辉  刘生发  吕亚清 《铸造》2007,56(4):341-344
采用铸造接触反应法制备Al-TiC间合金,EPMA和XRD分析显示,反应温度和保温时间是TiC颗粒原位合成的重要工艺参数,基于热力学计算和动力学分析探讨了原位TiC颗粒的形成机制。在AZ91镁合金熔体中加入0.3%的Al-10%TiC间合金可明显细化晶粒尺寸,由基体合金的107μm降至57μm,降低幅度约为47%。晶粒细化机制可归结为TiC颗粒作为初生α-Mg的异质晶核。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号