首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用原位合成法制备多壁碳纳米管/石墨烯复合材料,并用碳纳米管/石墨烯复合材料作为修饰玻碳电极材料,研究邻苯二酚和对苯二酚在修饰电极上的电化学行为.实验结果表明:在浓度为0.1 mol/L的Na_2PO_4-C_4H_2O_7(pH=4.0)缓冲溶液中,修饰电极对邻苯二酚和对苯二酚的电化学氧化还原显示出较高的催化特性.在优化条件下,邻苯二酚和对苯二酚在浓度0~300μmol/L范围内呈良好的线性关系,检测限均为1.8×10~(-8) mol/L.将该电极用于检测污水中邻苯二酚和对苯二酚的含量,结果较满意.  相似文献   

2.
采取自组装的方法制备3 巯基丙酸(3 mercaptoacetic propionic acid,MPA)自组装膜修饰金电极,进而采用循环伏安、交流阻抗等电化学方法对该电极进行表征,计算电极有效表面积为1.97×10-2 cm2.研究了尿酸(uric acid,UA)在该修饰电极上的电化学行为,结果表明,MPA/SAM/Au电极具有良好的稳定性和电化学活性,在pH=6.0的磷酸氢二钠 柠檬酸(Na2HPO4 C6H8O7)缓冲溶液中,相比裸金电极,MPA/SAM/Au电极对UA响应的峰电流较大.其氧化峰电流与尿酸的浓度在1.6×10-4~1×10-6 mol/L浓度范围内呈良好的线性关系,线性回归方程为ip/(μA)=0.738 9+0.040 46 c0/(μmol/L),相关系数R=0.998 6,检测限为5×10-7 mol/L.  相似文献   

3.
在碳纳米管(CNTs)修饰的玻碳电极(GCE)上采用电化学沉积法制备了铂微粒/碳纳米管修饰电极(Pt/ CNTs/GCE),并以该修饰电极作为甲醛的电化学传感器,用循环伏安法(CV)和线性扫描伏安法(LSV)研究了甲醛在该电极上的电化学行为,优化了实验条件,在此基础上建立了一种测定甲醛的伏安分析方法.实验表明:在0.01 mol/L硫酸溶液中,富集电位为-0.1 V且富集时间为3 min时,甲醛的氧化峰电流与其浓度在8.0μmol/L~1.0 mmol/L呈良好的线性关系(r=0.996),检测限为3.0μmol/L(信噪比为3:1).所提出的测定甲醛的方法具有较高的灵敏度和较好的重现性。  相似文献   

4.
以尿素为原料制备石墨氮化碳(g-C_3N_4)材料,以壳聚糖(CHIT)为黏合剂修饰于电极表面,再利用循环伏安法电沉积钴,成功制备出Co/g-C_3N_4-CHIT/GCE修饰电极,并将其应用于水样中磷酸二氢根离子(H_2PO_4~-)的电化学检测.采用循环伏安法和计时电位法进一步研究修饰电极的电化学性能.实验结果表明:在最佳实验条件下,修饰电极对H_2PO_4~-的响应电位与其浓度的对数在1.0×10~(-7)~1.0×10~(-3)mol/L范围内呈良好的线性关系,检出限为5.7×10~(-8)mol/L(S/N=3);该电极具有较宽的线性范围、较高的灵敏度和良好的选择性.  相似文献   

5.
采用涂覆法制备多壁碳纳米管(MWCNT)-离子液体([BMIM]PF6)修饰电极,研究Cu2+在该修饰电极上的阳极溶出伏安行为。考察了实验条件对Cu2+电化学行为的影响。研究表明,Cu2+在修饰电极上可得到灵敏的溶出峰。在优化的实验条件下,Cu2+在1.0×10-6~1.0×10-5mol/L浓度范围内与其氧化峰电流呈良好的线性关系,相关系数为0.998 4,检出限为9.0×10-8mol/L。该修饰电极制备简单,重现性好,用于微量铜的检测,效果良好。  相似文献   

6.
利用纳米钯/石墨烯材料构建一种测定双酚A的高灵敏电化学传感器. 本实验在石墨烯基底上电沉积钯纳米颗粒,得到纳米钯/石墨烯-壳聚糖复合物修饰玻碳电极(Pd/GR-Chit/GCE),并通过扫描电子显微镜和电化学技术对其进行表征. 研究了双酚A(BPA)在Pd/GR-Chit/GCE上的电化学行为,发现其氧化峰电流在Pd/GR-Chit/GCE表面得到显著的增强,表明修饰电极对BPA表现出明显的电催化效果. 优化了钯纳米颗粒的沉积条件、石墨烯的滴涂量、pH值、富集电位和富集时间等测定参数,建立了一种快速简便测定BPA电化学新方法,实验结果显示,在pH 7的磷酸盐缓冲溶液中,BPA峰电流与其浓度在1.0×10-7 mol/L~6.0×10-5 mol/L范围内呈良好的线性关系,检测限可达到1.0×10-8 mol/L.  相似文献   

7.
采用电化学方法制备聚亚甲基蓝(PMB)修饰阳极氧化铝(Anodic alumina oxide,AAO)纳米电极(PMB/AAO),并研究该电极的电化学性质和对抗坏血酸(AA)的催化氧化.结果表明:PMB/AAO纳米电极对AA有明显的催化氧化作用,其催化活性强于PMB/Au电极的催化作用.同时,应用线性扫描伏安法(Linear Sweep Voltammetry,LSV)对AA进行定量分析,其氧化峰电流与AA的浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为1.0×10-6 mol/L.该电极重现性良好,并将PMB/AAO用于维生素C片剂中AA的测定,结果令人满意.  相似文献   

8.
研制一种新型、简单、低成本的电化学传感方法,用于检测乳品中的三聚氰胺.首先将氧化石墨烯涂到电极上,制备GO/GCE修饰电极;然后利用层层自组装方法,把1,4-二硫苏糖醇(DTT)、金纳米粒子、L-半胱氨酸(L-Cys)组装到修饰电极表面,制备了GO/DTT/AuNPs/L-Cys/GCE复合电极,用来检测三聚氰胺.通过电化学阻抗和循环伏安行为探讨该修饰电极检测三聚氰胺的作用机理,同时优化了实验条件.该复合电极检测范围在1. 0×10~(-7)~1. 0×10~(-3)mol/L内呈良好线性关系,最低检测浓度为1. 0×10~(-8)mol/L.该修饰电极选择性和重现性好,用于牛奶样品中三聚氰胺的检测,回收率为98. 3%~99. 95%,有实际应用价值.  相似文献   

9.
制备L -半胱氨酸自组装膜修饰金电极,并研究抗坏血酸在修饰电极上的电化学行为,同时建立了利用修饰电极催化作用快速测定抗坏血酸的方法.在含有抗坏血酸的0.1mol/L HAc-NaAc(pH=4.0)缓冲溶液底液中,在-0.20~0.60V(vs,SCE)电压范围内,用修饰电极作为工作电极进行循环伏安扫描,抗坏血酸分别在峰电位Epa=0.264V,Epc=0.199V(vs.SCE)处产生灵敏的催化氧化还原峰.修饰电极对抗坏血酸的催化氧化峰与抗坏血酸的浓度在4.0×10-7~7.0×10-4mol/L范围内呈良好的线性关系.用该方法测定抗坏血酸检出限可达1.0×10-7mol/L.利用该方法测定维生素C丸中的抗坏血酸含量,结果令人满意.  相似文献   

10.
在含牛磺酸的磷酸盐缓冲溶液中,用循环伏安法在玻碳电极上制备聚牛磺酸薄膜.采用循环伏安法研究多巴胺(DA)和抗坏血酸(AA)在聚牛磺酸膜修饰电极上的电化学行为.实验结果表明聚牛磺酸膜修饰电极对DA的氧化具有良好的电催化作用和选择性,DA与AA氧化峰电位差达220 mV,对DA的电流响应灵敏度高出AA近十倍.在5×10-6~ 1×10-4 mol/L范围内,DA的浓度与峰电流呈良好的线性关系,相关系数为0.998 3,检测限为1.0×10-6 mol/L.该修饰电极能在AA共存时选择测定DA.  相似文献   

11.
采用TMS(CH3SiCl3)为原料,H2为载气,Ar为稀释气,在1000-1200℃范围以内以石墨为基体,通过化学气相沉积法(CVD)制备地SiC块体材料,在特定的工艺条件下,SiC的生长速率可达0.6mm/h,结合实验结果,研究了常压SiC-CVD过程中,对SiC生长速率产生影响的若干因素的作用,初步探索了基体尺寸与沉积室尺寸的比例、沉积温度、稀释气流量以及沉积时间对沉积速率的影响,综合分析提高了SiC生长速率的原因。  相似文献   

12.
采用溶胶凝胶一步法制备巯基功能化的SiO2微球,利用压片法将SiO2微球修饰在泡沫镍表面,制备SiO2@NF电化学传感器,利用Ag+与巯基的螯合作用对水中的Ag+进行检测。通过差分脉冲伏安法对SiO2@NF的电化学性能进行检测并进行了条件优化。结果表明,制备的SiO2微球大小均一、成球率高,可牢固的负载在泡沫镍表面。在最佳条件下使用差分脉冲伏安法对Ag+进行电化学检测,测定的线性范围为1~ 300 μmol/L,检测限为0.87 μmol/L,在实际水样的检测中也取得了较好的结果。  相似文献   

13.
制备了氮掺杂改性的碳纳米管(CNx),并对其进行了扫描电子显微镜(Scanning Electron Microscopy,SEM)和X射线衍射仪(XRD,X-Ray Diffraction)表征。利用循环伏安法测定了铅离子在氮掺杂碳纳米管修饰电极上的电化学行为。结果表明,氮掺杂碳纳米管修饰电极对铅离子有明显的电催化行为,而且它在铅离子检测中的效果明显优于裸的玻碳电极。在拟定条件下,氮掺杂碳纳米管修饰电极对铅离子的检测限为0.06μmol/L,线性范围为0.06~0.1μmol/L,并且具有良好的稳定性与重复性,因而该电极具有良好的应用前景。  相似文献   

14.
采用溶胶-凝胶法制备了Pt-La2O3-TiO2/石墨电极.通过循环伏安法、XRD衍射和扫描电镜等现代方法测试了Pt-La2O3-TiO2/石墨电极对吸附在电极表面上和溶解在0.2 mol/L Na2SO4溶液中CO的氧化的电催化活性.实验结果表明,氧化镧掺入Pt-TiO2/石墨电极中可以将吸附在电极上的CO和溶液中溶解的CO的氧化电位由0.47 V降低到0.40 V(vs.SCE),改善了对CO氧化的电催化活性.  相似文献   

15.
制备了电聚合硫堇膜修饰青霉素酶电极(青霉素酶/Thi/GCE),用于检测残留青霉素.运用循环伏安法研究了青霉素G钠在该电极上的电化学行为,并对电极的制作条件及检测条件进行了优化.结果表明在戊二醛质量分数为2.47%,牛血清蛋白质量分数为6.57%,固定化时间为2.44h,用酶量为50μL条件下制备的酶电极在pH为7.0,温度为25℃时响应性能达到最佳.该电极对青霉素G钠的线性范围为0.08~1.0μg/mL.  相似文献   

16.
To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraet...  相似文献   

17.
制备石墨烯玻碳修饰电极,进而采用循环伏安法、交流阻抗等电化学方法对该电极进行表征,研究该石墨烯修饰电极在邻苯二酚和对苯二酚上的电化学行为.结果表明,在石墨烯修饰电极上邻苯二酚的氧化峰电位和还原峰电位分别是270mV和161mV,对苯二酚氧化峰电位和还原峰电位分别是145mV和64mV,由于邻苯二酚和对苯二酚的氧化峰电位大约相离125mV,还原峰大约相离97mV,因此适合同时检测邻苯二酚和对苯二酚.邻苯二酚和对苯二酚的浓度在5.0×10-6~1.0×10-4mol/L范围内与峰电流分别呈良好的线性关系;且在8.0×10-5~1.0×10-3mol/L范围能同时检测邻苯二酚和对苯二酚,邻苯二酚的检测限可达5.0×10~7mol/L,对苯二酚的检测限可达1.0×10-mol/L.该石墨烯修饰电极可作为电化学传感器用于邻苯二酚和对苯二酚的含量同时测定及环境水体中实际样品的分析.  相似文献   

18.
用静电纺丝的方法将聚乙烯醇(PVA)静电纺丝到裸铂电极表面,分别采用扫描电镜法、循环伏安法、电流时间曲线法、交流阻抗等方法对该电极进行表征.研究了过氧化氢在该聚乙烯醇修饰电极的电化学行为.实验结果表明:聚乙烯醇纳米纤维膜呈现出理想的疏松多孔的网状结构,极大地增大了电极的有效表面积;在pH=7.4的磷酸盐缓冲溶液中相比裸铂电极,聚乙烯醇纳米纤维膜修饰电极对过氧化氢的响应电流有明显的提高,过氧化氢的浓度在7.8~2 900μmol/L范围内,与其还原电流呈良好的线性关系,检测限达1.1μmol/L.该聚乙烯醇修饰电极可以作为电化学无酶传感器用于低浓度过氧化氢的检测.  相似文献   

19.
The raw carbon nanotubes ( CNTs ) prepared by chemical vapor deposition ( CVD ) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristics of the two samples are investigated by the galvanostatic charge-dischorge measurements and cyclic voltammetry. The structural and interfacial changes of the CNTs electrode were analyzed by XRD and FTIR. The samples show a reversibility of lithium intercalation and de-intercalation. The reversible capacities of the first five cycles are larger than 300 mAh/ g and the irreversible capacity of the first cycle was much larger than that mentioned in literatures. There is no identical change in the structure during the charge and discharge. The reactions at the interface between electrode and the electrolyte are similar to those of other carbonaceous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号