首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究预热温度对TiC/Ni功能梯度涂层的影响,利用自蔓延高温合成结合准热等静压技术(SHS/PHIP),在H13钢表面制备了TiC/Ni梯度功能涂层,采用XRD和SEM-EDS对涂层的物相结构进行分析,采用显微硬度计测定涂层的表面硬度及界面结合性能。结果表明,涂层的主要物相为颗粒状TiC和包裹在TiC周围的Ni基固溶体;涂层为多孔骨架结构;随着预热温度升高,涂层表面孔隙率降低,致密度、TiC晶粒尺寸和表面硬度值增大,涂层与基体之间元素扩散增强,冶金结合强度提高。  相似文献   

2.
利用自蔓延高温合成结合准热等静压技术(SHS/PHIP),在H13钢表面成功制备了TiC/Ni梯度功能涂层。在700℃铝液中对涂层进行0.5h和2h的静态热熔损试验,采用XRD分析熔损涂层的物相,采用SEM-EDS观察熔损涂层的组织并分析成分。结果表明,熔损涂层的主要物相为TiC、Ni、TiO_2和AlNi_3。涂层表层失效原因为Ni粘结相被浸蚀以及TiC骨架结构被氧化。涂层内部以侵蚀Ni粘结相为主,TiC骨架仍保持原有组织结构。TiC耐铝液浸蚀性能强于Ni粘结相。  相似文献   

3.
用X射线衍射仪、扫描电镜、显微硬度计和摩擦磨损试验机研究了采用氩弧熔覆技术制备的TiC-Ni3Si/Ni基复合涂层的组织与性能.结果表明,氩弧熔覆的TiC-Ni3Si/Ni基复合涂层主要由TiC、Ni3Si、γNi(Fe)过冷奥氏体相组成,TiC硬质颗粒和以TiC为核心原位生成的Ni3Si相弥散分布在镍基粘结相中.显微硬度和摩擦磨损实验表明,TiC-Ni3Si/Ni基复合涂层平均显微硬度9.457 GPa,是基体平均显微硬度的4.78倍,在常温千滑动磨损条件下,TiC-Ni3Si/Ni基复合涂层磨损量约为同等摩擦磨损条件下Q235钢磨损量的11.84%.  相似文献   

4.
利用同步送粉激光熔覆技术,在Ti811钛合金表面激光熔覆原位合成了TiC和TiB_2颗粒增强镍基复合涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)分析了熔覆层的显微组织和物相组成,利用显微硬度计测试了熔覆层的显微硬度。试验结果表明,激光熔覆涂层与基体呈冶金结合,涂层的物相主要由α-Ti、TiC、Ti_2Ni和TiB_2组成,其中TiC呈树枝晶状和花瓣状,TiB_2呈长条状。平衡状态下TiC以正八面体晶体结构存在,但熔体中存在的Ni元素会影响TiC平衡状态,使其最终呈现六边形形貌。稀土氧化物Y_2O_3的加入有利于促进晶粒细化,提高熔覆层组织均匀性及表面硬度。熔覆层的显微硬度显著提高,最高硬度为900HV0.5左右,约为基底硬度的2.25倍。  相似文献   

5.
利用Ni60自熔合金粉末、TiFe粉、石墨、CaF_2和稀土经适当比例混合后采用激光熔敷技术制备TiC/Ni基涂层,同时研究对熔敷涂层宏观形貌、显微组织、微观形貌、物相结构及硬度的影响。结果表明:经激光熔敷可在镍基涂层中形成陶瓷硬质相TiC,熔敷涂层表面光滑平整;熔敷层底部与基体的结合处有一条白亮带,熔敷层组织由Ti C,Fe3Ni,NiO等相组成,TiC颗粒以球状、团聚状和花瓣状分布于(Ni,Fe)固溶体;熔敷层硬度分布较均匀,硬度为HV_(0.2)550~HV_(0.2)650,明显高于基体硬度HV0.2240~HV0.2260。  相似文献   

6.
利用激光熔覆技术在0Cr18Ni9奥氏体不锈钢表面制备了NiCrMn-TiC/WC-La_2O_3硬质合金耐磨涂层。采用X衍射仪、扫描电镜、能谱仪分析了熔覆层的物相组成及显微组织。测试了涂层的显微硬度,并在室温环境下对涂层进行干滑动摩擦磨损试验。结果表明:涂层主要由γ-(Ni,Fe)共晶化合物、未溶解的TiC和WC、原位生成的M_7C_3、TiC和(Ti,W)C、WC碳化物硬质相以及少量La_2O_3和Cr_3C_2组成。激光熔覆层的显微硬度大幅提高,显微硬度平均值为1172.74 HV,约为基体的3.48倍。熔覆层的摩擦系数和磨损率明显低于基体,磨损率约为基体的1/4。磨损试验过程中在涂层表面生成的大量含氧粘附层出现在涂层表面,有利于提高涂层的耐磨性。  相似文献   

7.
利用Ni60自熔合金粉末、 TiFe粉、石墨、 CaF_2,稀土,经适当比例混合后采用激光熔覆技术在35CrMo基材表面制备TiC/Ni60基涂层,对熔覆层宏观形貌、硬度、磨损后的微观形貌进行观察和研究,同时对比了TiC/Ni60基涂层与Ni60涂层的磨损试验。结果表明:经激光熔覆后熔覆层平均显微硬度明显提高,高于Ni60涂层硬度, w(CaF2)8%的粉末涂层与Ni60涂层相比,耐磨损性能提高。  相似文献   

8.
反应电火花沉积合成TiC/Ti复合涂层研究   总被引:1,自引:0,他引:1  
利用DZ-1400型电火花沉积/堆焊机,以高纯石墨为电极,在TC4钛合金基体表面制备了厚度为70~110 μm的TiC增强金属Ti基复合涂层.利用SEM、XRD、EDS、AES和XPS等检测手段分析了涂层的形貌、组织、物相和化学组成,利用显微硬度计测试了涂层截面显微硬度.结果表明:涂层主要由TiC、Ti和C相组成,TiC是电极材料与基体材料反应形成的新相,是涂层的主要组成相;涂层组织致密、均匀、连续,涂层与基体形成良好的冶金结合;涂层硬度呈梯度变化,随着距表面距离的增大而减小,涂层最大硬度是基体的5.7倍.  相似文献   

9.
采用真空热压法制备出铁基表面Ni3Al涂层、TiC/Ni3Al涂层及TiC/Ni3Al-Ni3Al双层涂层,研究了不同涂层的微观结构及相组成,并用洛氏硬度计对涂层剖面进行了硬度测试。结果表明:TiC/Ni3Al-Ni3Al双层涂层结合了Ni3Al涂层、TiC/Ni3Al涂层两者的优点。表层涂层的微观组织为TiC颗粒较为均匀的分布在Ni3Al基体上,组织纯净、致密,过渡层Ni3Al相与表层涂层及钢基体之间均为良好的冶金结合。TiC/Ni3Al-Ni3Al双层涂层既维持了TiC/Ni3Al涂层的高硬度,又实现了从表层至基体之间性能的梯度过度。  相似文献   

10.
为了提高奥氏体不锈钢的耐磨性能,扩大其应用范围,以Ti-C-Fe-Ni混合合金粉末为原料,利用等离子熔敷技术在1Cr18Ni9Ti奥氏体不锈钢表面原位合成了TiC增强耐磨复合涂层。分析了涂层的显微组织结构,测试了涂层沿层深方向的硬度分布,评价了涂层在室温干滑动磨损试验条件下的摩擦磨损性能,结果表明:等离子熔敷TiC金属陶瓷增强复合涂层显微组织细小均匀,由花瓣状和少量颗粒状TiC初生相均匀分布在TiC/γ-(Fe,Ni)共晶基体上组成,涂层与不锈钢基材之间形成了完全冶金结合,涂层平均显微硬度约790 HV,涂层在室温干滑动磨损试验条件下表现出良好的耐磨性及较低的摩擦系数。  相似文献   

11.
采用激光熔覆技术在H13热作模具钢表面分别制备了Co50合金涂层和TiC/Co基复合涂层.借助XRD,SEM与显微硬度计对比分析了涂层与基材的结合状态、涂层物相组成、截面组织形貌和显微硬度分布.结果表明,Co50合金涂层和TiC/Co基复合涂层均与H13钢基材呈良好冶金结合特征.Co50合金涂层主要由初生γ-Co枝晶及其间的共晶组织组成,而TiC/Co基复合涂层主要由TiC颗粒、枝晶及细小的共晶组织组成,其组成相除含有TiC,TiCo3和Cr2Ni3外,还有Cr-Ni-Fe-C等相.涂层截面显微硬度分布表明,TiC/Co基复合涂层截面平均显微硬度明显高于Co50合金涂层,分别为5520 MPa和4990 MPa,分别是H13钢基材的2.7和2.4倍.  相似文献   

12.
采用激光熔覆技术在TA2钛合金表面预置Ti+TiC+WS_2复合粉末制备了自润滑耐磨复合涂层,并对涂层的物相、显微组织、显微硬度和摩擦学性能进行了分析。结果表明:涂层与基体呈冶金结合,无明显气孔和裂纹。涂层主要有α-Ti基体、增强相(Ti,W)C_(1-x)和TiC以及自润滑相Ti_2SC和TiS。涂层的平均显微硬度为1005.4 HV约为基体TA2的5倍。在干摩擦磨损条件下,对比TA2基体,由于涂层中自润滑相Ti_2SC、TiS的存在,涂层摩擦系数波动较平缓,磨损表面呈现轻微的黏着磨损,表现出较优异的耐磨减摩性能。  相似文献   

13.
激光熔覆原位自生TiC颗粒增强Ni基复合涂层的组织与性能   总被引:1,自引:0,他引:1  
采用激光熔覆技术在H13钢表面制备出原位自生TiC颗粒增强Ni基复合涂层,利用扫描电镜、能谱仪和X射线衍射仪对熔覆层组织、成分和物相进行了分析,并测试了熔覆层显微硬度和耐磨性能.结果表明,激光熔覆层与基体呈良好的冶金结合,涂层中无裂纹、气孔等缺陷.涂层组织由γ-Ni、Cr7C3和TiC等相组成,原位自生TiC颗粒多呈菱形,尺寸在1~3μm之间,涂层显微硬度(800~1000 HV0.2)明显高于基体的显微硬度(300 HV0.2).激光熔覆层中存在颗粒强化和细晶强化等多种强化作用,显著提高了H13钢的耐磨性能.  相似文献   

14.
采用铸造反应合成技术制备出TiC/Ni3Al表面复合涂层材料,研究了涂层的物相、组织和界面形态,测试了涂层的硬度和耐磨性。结果表明:Ti-C-3Ni-Al体系反应完全,产物为TiC和Ni3Al。表面复合涂层中直径为1~3μm的TiC颗粒呈球形镶嵌在Ni3Al基体上,随着TiC含量的提高,颗粒尺寸略有长大、分布更均匀、涂层更致密,且涂层与钢基体界面为良好的冶金结合,随TiC含量的变化而界面呈现出不同的形貌,在TiC含量〈45%时,涂层为一整体,从涂层到界面处Ni、Al、Ti、Fe元素呈梯度变化;在TiC含量≥45%时,涂层出现了分层现象。随着涂层中TiC含量的增高,材料的硬度和耐磨性提高,表面复合涂层的硬度和耐磨性均明显高于钢基体。  相似文献   

15.
以Ti粉、C粉、WC和Ni60A粉末为原料,利用氩弧熔覆技术在Q235钢基材表面成功制备出Ni基增强相复合涂层,应用OM,SEM,XRD对复合涂层的显微组织和物相进行了分析.结果表明,复合涂层物相由TiC和(Ti,W)C颗粒,γ-Ni奥氏体枝晶和枝晶间的M23C6共晶组织组成,TiC颗粒相细小弥散的分布在基体上,颗粒尺寸大约1.5μm.显微硬度和耐磨性测试结果表明,涂层的显微硬度较基体Q235钢提高4倍以上;常温干滑动磨损条件下,复合涂层具有优异的耐磨性.  相似文献   

16.
采用SG-100型等离子喷涂喷枪,使用亚音速(Subsonic)和马赫一(Mach I)两种不同喷枪配置,在Q235钢表面制备了TiC/NicrMo涂层.用扫描电镜、X射线衍射仪和电子探针等分别对这两种涂层表面、截面形貌、相成分以及元素分布进行了分析.同时对两种涂层孔隙率、显微硬度及耐磨损性能进行了对比.结果表明,Mach I喷枪制备的涂层比Subsonic喷枪制备的涂层致密,孔隙率较小,涂层与基体结合良好,滑动磨损性能优于Subsonic涂层,显微硬度略高于Subsonic涂层;Subsonic喷枪制备的涂层与基体结合界面有分离现象出现,涂层中有较大空隙存在.两种涂层中TiC均发生氧化,生成TiO2;TiC与Mo也发生反应生成Mo2C.  相似文献   

17.
目的提高H13模具钢的表面耐磨性,探索金属陶瓷涂层的应用。方法分别用Ti(C,N)基金属陶瓷棒和纯镍棒作为电极,氩气为保护气体,在H13钢表面电火花沉积制备Ni/Ti(C,N)金属陶瓷复合涂层。使用X射线衍射仪对涂层的相组成进行了分析,并用扫描电子显微镜及能谱仪观察涂层的微观结构和元素分布情况,采用显微硬度计和CSM球盘式摩擦计对涂层的显微硬度和不同载荷下的耐磨性进行测试。结果涂层表面为单脉冲沉积斑点堆积而成的溅射状形貌,Fe和Ti元素整体上呈现出分区富集的特征,强化层主要物相包括TiC(0.7)N(0.3)、Ni(17)W3、Ni-Cr-Co-Mo和Fe3Ni2。涂层截面组织均匀,缺陷较少,厚度约为31μm,Fe、Ti和Ni元素均在界面处发生扩散,形成了良好的冶金结合,过渡层与基体相互混合,呈现出机械式的咬合结构。涂层的显微硬度实测最高值达1420HV,约为基体的5.4倍。涂层具有比基体更低的摩擦系数,且30 min内的磨损质量损失仅为基体的1/2,涂层磨损机理主要为粘着磨损和轻微的磨粒磨损。结论在H13钢表面电火花沉积制备的Ni/Ti(C,N)金属陶瓷复合涂层可提高其表面的硬度、耐磨性,且具有一定减摩性,可以起到延长模具寿命的作用。  相似文献   

18.
以B4C和Ni60A粉末为预涂材料,采用氩弧熔覆技术,在Ti6Al4V合金表面原位合成TiC与TiB2增强相增强钛基复合材料涂层.运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,熔覆层组织主要由TiC和TiB2组成,TiC颗粒和TiB2颗粒弥散分布在基体上,TiC颗粒的尺寸为2~3μm,而呈长条状的TiB2颗粒尺寸为3~5μm.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1200MPa左右,复合涂层的耐磨性能比Ti6Al4V基体提高约20倍.  相似文献   

19.
采用等离子熔覆技术在AZ91D镁合金表面熔覆了NiAl/Ti+C复合粉末,制备出原位合成TiC增强的NiAl金属间化合物基复合涂层.采用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)研究了复合涂层的物相和组织,对复合涂层的显微硬度和耐蚀性进行了测定.结果表明:复合涂层主要由NiAl金属间化合物和分布其上的块状TiC陶瓷相组成;在金属间化合物和陶瓷相的作用下,熔覆层具有高的硬度和耐蚀性能.  相似文献   

20.
TC4钛合金表面激光熔覆复合涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
采用5 kW横流CO2激光器,在TC4钛合金表面熔覆TiC、TiB2与Ni的混合粉末,制备了无气孔、无裂纹、组织均匀致密的复合涂层。用SEM、EDS、XRD、显微硬度计以及立式万能摩擦磨损试验机分析了激光熔覆层的显微组织、成分和物相,测试了激光熔覆层横截面显微硬度,以及覆层耐磨性能。结果表明,激光熔覆复合涂层与基体呈冶金结合;熔覆层组织从表层到结合区呈现出由棒状、块状向树枝状、颗粒状转变的趋势,且主要由Ti、TiC、TiB、Ti2Ni、TiNi等相组成;熔覆层显微硬度最高可达863 HV0.2,为基体的2.5倍;熔覆层耐磨性能较TC4钛合金明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号