首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
玄武岩纤维聚合物混凝土抗氯离子渗透性能试验研究   总被引:1,自引:0,他引:1  
通过混凝土电通量试验,研究了不同掺量玄武岩纤维、丁苯乳液聚合物及两者复掺对混凝土抗氯离子渗透性能的影响。试验结果表明,单掺玄武岩纤维和丁苯乳液聚合物时,随着掺量的增加,混凝土的氯离子渗透性能均呈现先降低后增加的趋势,丁苯乳液聚合物对混凝土抗氯离子渗透性能的改善作用优于玄武岩纤维;两者复掺时,可以更加显著地提高混凝土的抗氯离子渗透性能,但二者对混凝土抗氯离子渗透性能的改善作用存在一个合理的掺量范围,当玄武岩纤维掺量为2.5kg/m3、丁苯乳液聚合物掺量为10%时,混凝土抗氯离子渗透性能最好。  相似文献   

2.
自密实清水混凝土结合了自密实混凝土和清水混凝土的优点,具有广阔的应用前景。但由于直接暴露于环境中,开裂不仅影响美观,更直接引起耐久性问题。采用平板诱导开裂试验,以粉煤灰掺量及纤维掺量为主要参数,通过试验研究自密实清水混凝土开裂性能。结果表明,粉煤灰掺量在15%~30%范围内,随粉煤灰掺量增加,自密实清水混凝土的抗裂性能提高;玄武岩纤维在1.0~1.6kg/m~3掺量内对混凝土的开裂时间影响较小,但随纤维掺量的增加,自密实清水混凝土的抗裂性能显著提高。玄武岩纤维掺量为1.6kg/m~3时,其开裂面积仅为未掺的40.7%。  相似文献   

3.
设计了纤维掺量分别为0.5、1.0及1.5 kg/m3的玄武岩混凝土和玻璃纤维混凝土,研究分析了纤维掺量对混凝土碳化性能的影响,并通过电通量法测试了在碳化条件下,不同纤维掺量的玄武岩、玻璃纤维混凝土氯离子渗透的变化,同时采用扫描电镜观察了试件的微观结构。结果表明:掺加纤维会降低混凝土的抗碳化及氯离子渗透性能,玄武岩纤维混凝土的性能要优于玻璃纤维混凝土;碳化作用生成的CaCO3沉淀填补了混凝土中的孔隙,使得纤维混凝土的抗氯离子渗透性能提高。  相似文献   

4.
超高强混凝土(UHSC)和玄武岩纤维都具有力学性能优异、综合性能好、性价比高、应用的前景广泛等优点,为此,本文以玄武岩纤维为外掺料,试验研究超高强玄武岩纤维混凝土(UHSBFC)的力学性能,通过考察立方体强度、棱柱体强度、弹性模量、抗折强度和劈拉强度,得出如下结论:水灰比对超高强混凝土的力学性能影响最大;玄武岩纤维有效提高UHSC的力学性能,UHSC抗压强度越高,玄武岩纤维的作用越明显;玄武岩纤维的掺量存在较优值,试验分析认为玄武岩纤维外掺料为2kg/m~3是最优的。  相似文献   

5.
活性粉末混凝土(RPC)是一种高耐久性混凝土材料,具有很好的抗渗能力.研究通过对相同配合比的RPC掺入不同类型和不同掺量的玄武岩纤维进行力学性能试验和抗氯离子渗透试验.试验表明,当掺量为3kg/m^3时,玄武岩纤维对试件的力学性能提升较大;长度为6mm的玄武岩纤维,当掺量为5kg/m^3时,对应的试件抗氯离子渗透性能最大;长度为12mm的玄武岩纤维,当掺量为4kg/m^3时,对应的试件抗氯离子渗透性能最大.  相似文献   

6.
《混凝土》2016,(11)
为了研究混杂纤维活性粉末混凝土(HFRPC)抗氯离子渗透能力,通过在活性粉末混凝土(RPC)体系中混掺或单掺玄武岩纤维、聚丙烯纤维,采用ASTM C1202的电通量法分析研究了纤维对RPC抗氯离子渗透性能的影响。结果表明,单聚丙烯纤维掺量为0.8 kg/m~3时,RPC抗氯离子渗透性能最高,混掺纤维RPC的抗氯离子渗透性能低于单掺纤维的RPC,但均高于素混凝土的抗氯离子渗透性能。通过扫描电子显微镜(SEM)从微观上分析了基体内部微细裂纹对RPC抗氯离子渗透性能的影响,证实了基体内部、纤维与基体的黏结界面处微细裂纹为影响RPC抗氯离子渗透性能的关键因素。  相似文献   

7.
为探究玄武岩纤维(BF)掺量对混凝土孔隙结构的作用机制,进而影响抗压性能的规律,制作了玄武岩纤维掺量为0、1.5 kg/m~3、3.0 kg/m~3、4.5 kg/m~3、6.0 kg/m~3、7.5 kg/m~3的标准尺寸试块,进行抗压性能试验,得出不同BF掺量混凝土各龄期下的抗压强度。引入核磁共振(NMR)技术,测试不同BF掺量的混凝土孔隙分量结构。通过回归分析表明,随着纤维掺量的增加,混凝土抗压强度呈先增后减的趋势。BF掺量为3.5 kg/m~3时7 d、14 d抗压强度最大,较素混凝土分别增大6.4%和7.6%,BF掺量为3 kg/m~3时28 d抗压强度最大,较素混凝土增加14.1%。NMR试验结果显示,混凝土内部总孔隙率随着BF掺量的增大而增大,混凝土内部总孔隙率达到一定值后导致其抗压强度降低。通过分析抗压试验应力-应变曲线,得出BF混凝土抗压损规律,并对其增强机理进行了简要分析。  相似文献   

8.
玄武岩纤维是一种无机非金属材料,被称为21世纪无污染的"绿色工业材料和新材料"。该试验通过研究5种不同体积掺量的玄武岩纤维对混凝土抗压性能和抗折性能的影响,研究表明,随着玄武岩纤维掺入量的增加,玄武岩纤维混凝土的抗压强度、抗折强度都呈现先增加后下降的趋势,因此掺入玄武岩纤维对混凝土的抗压、抗折性能都有显著的提高。当掺量为4.05kg/m~3时,玄武岩纤维混凝土的抗压强度达到最高,比素混凝土提高了20.2%,随着玄武岩纤维掺量的增加,抗压强度呈现下降的趋势;当掺量为1.35kg/m~3时,玄武岩纤维混凝土的抗折强度达到最高,比素混凝土提高了12.3%,随着玄武岩纤维掺量的增加,抗折强度呈现下降的趋势。试验结果表明,玄武岩纤维混凝土存在一个最优掺量,最优纤维掺量为1.35kg/m~3,在最优纤维掺量下,玄武岩纤维混凝土的抗压强度、抗折强度有明显的提高。  相似文献   

9.
为了研究玄武岩纤维对活性粉末混凝土耐久性的影响,进行了9组玄武岩纤维活性粉末混凝土(RPC)和3组素RPC的氯离子渗透试验以及1组玄武岩纤维RPC的碳化性能试验。试验结果表明,素RPC的电通量为104~120 C,氯离子渗透性极低,玄武岩纤维RPC的电通量均小于100 C,氯离子渗透性可以忽略。当水胶比为0.22、玄武岩纤维体积掺量为0.10%时,试件的抗氯离子渗透性能最好。玄武岩纤维RPC试件具有良好的抗碳化性能,其28 d碳化深度为0。  相似文献   

10.
研究了玄武岩纤维掺量对无砟轨道现浇混凝土工作性能、力学性能和早期抗裂性能的影响。结果表明,掺入玄武岩纤维会降低混凝土的坍落度,增加含气量,并且随着玄武岩纤维掺量的增加,这种效果越明显。玄武岩纤维掺量对混凝土抗压和抗折强度的影响存在一个最佳值,当掺量小于3.0 kg/m~3时,28 d抗压和抗折强度与基准混凝土差别不大;当掺量大于3.0 kg/m~3时,抗压强度有所降低,抗折强度有一定程度的提高。掺入玄武岩纤维可有效抑制混凝土的早期开裂,当掺量为2.5 kg/m~3时,混凝土裂缝降低系数为53%。  相似文献   

11.
通过进行单掺粉煤灰、单掺沙漠砂、双掺粉煤灰和沙漠砂混凝土抗压强度、电通量和RCM试验,揭示沙漠砂替代率和粉煤灰掺量对沙漠砂混凝土抗氯离子渗透性能和抗压强度的影响规律,分析电通量和氯离子扩散系数的相关性。研究表明:单掺粉煤灰混凝土抗氯离子渗透性能随着粉煤灰掺量增加而增强;单掺沙漠砂混凝土抗氯离子渗透性能随着沙漠砂替代率增加呈先增强后减弱趋势,沙漠砂替代率60%时混凝土抗氯离子渗透性能最好;粉煤灰掺量30%、沙漠砂替代率60%时,双掺粉煤灰和沙漠砂混凝土抗氯离子渗透性能最好;电通量和氯离子扩散系数相关性良好。  相似文献   

12.
通过在混凝土中双掺玄武岩纤维和粉煤灰,设计4种试验方案配制高性能混凝土,测试了纤维掺量改变混凝土抗碳化性能的法则,基于RCM法研究了碳化3 d、7d、14 d和28 d四个龄期条件下,氯离子扩散的变化规律.研究表明:掺加纤维会增强混凝土抗碳化能力,当纤维体积含量是1.6 kg/m3时,混凝土抗碳化能力最强;氯离子扩散系数随着混凝土养护时间的延长而变小,早期速度变小快,后期减小慢,其机理是碳化产生CaC03堆积在混凝土中,充填了混凝土的孔隙,使混凝土的耐久性能得到改善,为在工程中应用提供参考.  相似文献   

13.
在CL15陶粒混凝土基础上,分析0%、10%、20%、30%和40%五种粉煤灰掺量,0kg/m~3、0.5kg/m~3、1kg/m~3、1.5kg/m~3、2kg/m~3五种PVA纤维掺量对陶粒混凝土抗压强度和抗弯拉强度的影响。试验结果分析,陶粒混凝土随着粉煤灰掺量的增加,陶粒混凝土强度先增大后减小,陶粒混凝土中粉煤灰的最优掺量为20%,不宜超过40%。PVA纤维可以有效提高陶粒混凝土的力学性能,尤其是抗弯拉强度。但是纤维掺量过大也会大幅降低陶粒混凝土强度,甚至低于设计要求,纤维的建议掺量为1.0~1.5kg/m~3。  相似文献   

14.
采用超细矿物掺合料进行C100超高强高性能混凝土配制技术研究。试验结果表明,超细矿渣粉和粉煤灰微珠可有效改善超高强混凝土的工作性、抗压强度和耐久性,满足C100超高强混凝土配制要求,混凝土坍落度不低于180 mm,28 d抗压强度大于110 MPa;单掺矿渣粉混凝土的56 d电通量小于1000 C,84 d氯离子扩散系数小于1.5×10~(-12)m~2/s;单掺粉煤灰微珠混凝土28 d电通量小于700 C,56 d电通量小于500 C,84 d氯离子扩散系数均不大于1.0×10~(-12)m~2/s。所制备的C100混凝土内部结构致密,且胶凝材料用量小于550 kg/m~3,可有效降低混凝土的收缩。  相似文献   

15.
通过抗拉、抗压及抗弯性能试验,研究了20mm短切玄武岩纤维对喷射混凝土力学性能的影响规律。结果表明,玄武岩纤维体积掺量在3kg/m~3时,玄武岩纤维混凝土的力学性能最优,抗压、抗拉、抗折强度的增幅可达33%、23%、40%,掺量再增加时力学性能下降。端钩型钢纤维掺量为20kg/m~3时对混凝土各项力学性能的增幅仅为6%~8%,其效果弱于最佳掺量的玄武岩纤维混凝土。混凝土开裂后,乱向分布的纤维会将力传递到裂缝两侧的表面,使裂缝的发展得到抑制,试件可以继续受力,玄武岩纤维的桥联作用对抑制湿喷混凝土开裂有较大的帮助。  相似文献   

16.
通过正交优化设计试验与数学建模,采用电通量法评价麦秸秆纤维混凝土的抗氯离子渗透性能。研究表明:水胶比对麦秸秆纤维混凝土抗氯离子渗透性能的影响最大,麦秸秆纤维掺量影响较大,矿物掺合料掺量影响较小。制备最佳抗氯离子渗透性能的麦秸秆纤维混凝土组合为水胶比0.40、矿物掺合料掺量20%、麦秸秆纤维掺量0.1%,此时麦秸秆纤维混凝土的6 h电通量为782.68 C,具有较强的抗氯离子渗透性能。麦秸秆纤维混凝土氯离子扩散电通量Q与水胶比X_1、矿物掺合料掺量X_2及麦秸秆纤维掺量X_3之间的数学模型为:Q=848.2667X_1-34.2333X_2-2320X_3+453.5289,可较准确地预测相同条件下麦秸秆纤维混凝土的6 h电通量。  相似文献   

17.
研究了粉煤灰、膨胀剂及聚丙烯纤维掺量对补偿收缩纤维混凝土抗压强度、抗裂性能及变形性能的影响。结果表明:适当的粉煤灰掺量不仅有利于提高混凝土的后期强度,同时可以显著提高混凝土的限制膨胀率;随着膨胀剂掺量的增加,混凝土的强度略有降低,限制膨胀率增幅较大;掺加适量的聚丙烯纤维有利于改善混凝土的抗裂性能,显著降低混凝土转空干后的收缩变形,聚丙烯纤维的较优掺量为0.8 kg/m~3。  相似文献   

18.
采用ASTM C1202电通量法研究了矿物掺合料对自密实混凝土工作性能、强度和抗氯离子渗透性能的影响。结果表明,单掺粉煤灰时混凝土试件电通量随粉煤灰掺量的提高先减小后增加,28d龄期时粉煤灰掺量为40%的试件电通量最低,而60d龄期时粉煤灰掺量为50%的试件电通量最低;粉煤灰与矿渣复掺时,混凝土试件电通量随复合掺合料体系中粉煤灰掺量的提高先减小后增加,28d龄期时复掺比例为3:7的试件电通量最低,而60d龄期时复掺比例为5∶5的试件电通量最低;粉煤灰与硅灰复掺时,混凝土试件电通量明显降低,抗氯离子渗透性能显著提高。  相似文献   

19.
掺粉煤灰混凝土的抗氯离子渗透性试验研究   总被引:2,自引:0,他引:2  
本文对不同水胶比、不同粉煤灰掺量下的混凝土,利用ASTM C1202试验方法,测定了在标准养护条件下14d、28d和90d的6h电通量值。结果表明,标准养护28d时,适当粉煤灰掺量下,低水胶比的混凝土比高水胶比的混凝土具有更好的抗氯离子渗透性能;水胶比0.5以上时,水化早期随着粉煤灰掺量的增加混凝土电通量增加,水化后期则随着粉煤灰掺量的增加电通量急剧下降;0.35以下水胶比的混凝土氯离子抗渗透性能高于0.5以上水胶比的混凝土,且掺粉煤灰混凝土更适合采用长龄期的电通量来评价混凝土的抗氯离子渗透性能。  相似文献   

20.
就玻璃粉对掺矿粉混凝土和掺粉煤灰混凝土的抗氯离子渗透性的影响进行了对比研究。试验结果表明,玻璃粉以1/4质量比例复掺进入矿粉混凝土和粉煤灰混凝土,直到矿粉掺量达到40%以及粉煤灰掺量达到32%,在56 d龄期以后,可以提高两种混凝土抗压强度。但玻璃粉对两种混凝土抗氯离子渗透性能的影响并不相同,在矿粉混凝土系统中,玻璃粉的掺入,除28 d在60%矿粉掺量和15%玻璃粉掺量时使混凝土电通量和DRCM较单掺60%矿粉提高外,所有配合比从28~90 d复掺玻璃粉和矿粉混凝土比单掺矿粉混凝土具有更低的电通量和DRCM。而玻璃粉和粉煤灰复掺混凝土中,随玻璃粉的掺入,从28~90 d粉煤灰掺加量不超过32%时,复掺玻璃粉和粉煤灰混凝土均比单掺粉煤灰混凝土具有更高的DRCM或只是在90 d少量降低了电通量。说明玻璃粉对矿粉混凝土较粉煤灰混凝土的抗氯离子渗透性能具有更好的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号