首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固相合成法制备了La0.8Sr0.2(Ga0.8Mg0.2)0.1Fe0.9O3-δ(LSGMF)混合导体和La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)固体电解质, 利用XRD、TGA、范德堡直流四探针法和热膨胀仪等对试样进行了分析。以LSGMF为致密扩散障碍层, 以LSGM为氧泵层, 采用共压共烧结法制备了极限电流型氧传感器, 利用SEM和EDS对LSGMF/LSGM陶瓷体横截面的微观形貌和成分进行了分析。结果表明: LSGMF具有菱方钙钛矿结构(R-3c空间群), 它在650℃失重速率最快, 其电导率随温度的升高而增大; 300~1000℃范围, LSGM与LSGMF的热膨胀系数分别为12.51×10-6/℃和12.80×10-6/℃。650~850℃范围, 氧传感器具有良好的极限电流平台, lgIL(极限电流IL)与1000/T呈线性关系, LSGMF中氧离子的扩散激活能为0.4008 eV。800℃、0.3mol%<x(O2)<21.0mol%时, 极限电流IL与氧含量x(O2)间的关系为: IL(mA)=10.285x(O2)(mol%), R=0.9982。LSGMF和LSGM结合牢固, 未产生裂纹, EDS分析基本符合各化合物的化学计量比。  相似文献   

2.
采用共沉淀法合成了具有钙钛矿结构的中温固体电解质La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM),并用DTA-TGA和X射线衍射仪分析了LSGM材料中钙钛矿相的形成过程,采用SEM、交流阻抗谱等检测技术对LSGM电解质的结构及性能进行了表征.XRD分析结果表明,1200℃烧结后,粉体开始形成钙钛矿结构,随温度的升高粉体中杂相含量越来越少,于1450℃时形成了单一的钙钛矿相结构.  相似文献   

3.
采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(PSCF)和Gd_(0.2)Ce_(0.8)O_(2-δ)(GDC)粉体,高温固相法合成La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质粉体。以LSGM为电解质,PSCF同时作为阴极和阳极,GDC作为功能层材料,构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性,交流阻抗法记录界面极化行为,用扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明,合成的PSCF粉体呈立方钙钛矿结构,具有良好的氧化–还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能,800℃时,电极│电解质界面极化电阻从6.892?·cm~2下降到0.314?·cm~2;以加湿H_2(含体积分数3%的水蒸气)为燃料气,空气为氧化气时,单电池输出功率密度由269 m W/cm2增大至463 m W/cm~2。研究结果显示,PSCF是对称固体氧化物燃料电池良好的候选电极材料,GDC功能层对改善电池长期稳定性能具有潜在的应用价值。  相似文献   

4.
采用固相反应法合成中温固体氧化物燃料电池的Sm_(0.5)Sr_(0.5)CoO_(3-δ)阴极粉末,经机械混合法制备出Sm_(0.5)Sr_(0.5)CoO_(3-δ)-Ce_(0.8)Sm_(0.2)O_(1.9)复合阴极粉末。研究了不同煅烧温度得到粉末的晶体结构,判断得出Sm_(0.5)Sr_(0.5)CoO_(3-δ)阴极粉末的最佳煅烧温度,表征了Sm_(0.5)Sr_(0.5)CoO_(3-δ)和Ce_(0.8)Sm_(0.2)O_(1.9)之间的化学相容性。通过电化学工作站对Sm_(0.5)Sr_(0.5)CoO_(3-δ)和Sm_(0.5)Sr_(0.5)CoO_(3-δ)-Ce_(0.8)Sm_(0.2)O_(1.9)的电化学性能进行了测试。结果表明:Sm_(0.5)Sr_(0.5)CoO_(3-δ)的最佳煅烧温度大约是1400℃,Sm_(0.5)Sr_(0.5)CoO_(3-δ)阴极和Ce_(0.8)Sm_(0.2)O_(1.9)电解质二者之间呈现出良好的化学相容性。Sm_(0.5)Sr_(0.5)CoO_(3-δ)-Ce_(0.8)Sm_(0.2)O_(1.9)粉末的中位径(D_(50))约是8.034μm。Ce_(0.8)Sm_(0.2)O_(1.9)电解质粉末的添加有效地降低了Sm_(0.5)Sr_(0.5)CoO_(3-δ)的极化电阻。与Sm_(0.5)Sr_(0.5)CoO_(3-δ)相比,Sm_(0.5)Sr_(0.5)CoO_(3-δ)-Ce_(0.8)Sm_(0.2)O_(1.9)复合阴极的单电池在700℃时具有更高的功率密度。  相似文献   

5.
采用溶胶-凝胶法制备La_(0.7)Sr_(0.3)FexCo_(1-x)Me_(0.1)O_(3-δ)(x=0.8、0.7,Me=Cu、Ni、Mn)系列阴极材料,通过热重-差热分析(TG-DTA)、X射线衍射(XRD)、扫描电镜(SEM)、直流四探针法对材料的结构与性能进行研究。XRD研究结果表明,不同成分的干凝胶在1000℃煅烧时,全部形成钙钛矿相,并且不同成分的阴极材料与电解质SDC在煅烧的过程中未发生反应,具有良好的化学稳定性。采用直流四电极法测试了阴极材料La_(0.7)Sr_(0.3)FexCo_(1-x)Me_(0.1)O_(3-δ)系列的电导率,结果表明,在测试温度400~800℃条件下,阴极材料La_(0.7)Sr_(0.3)FexCo_(1-x)Me_(0.1)O_(3-δ)系列具有较高的电导率,其中La_(0.7)Sr_(0.3)FexCo_(1-x)Me_(0.1)O_(3-δ)样品具有最高的电导率,在800℃时电导率达到了691.71S/cm。  相似文献   

6.
为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。  相似文献   

7.
Fluidized bed reactor is widely used in coal char-CO_2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)//La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(3-δ)//La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)(LSCFN//LSGM//LSCFN)was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H_2, 88.8% CO, and 10.44% CO_2, when the ratio of oxygen mass flow rate to that of coal char(MO2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 m W/cm~2 was achieved for the syngas produced at 0.29 of M_(O2)/M_(char). In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm~2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO_2.It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.  相似文献   

8.
采用溶胶-凝胶法合成La_2NiO_(4+δ)粉末,并对粉末的非化学计量氧系数、电导率、氧表面交换性能、电化学性能以及稳定性进行分析。结果表明,制备的La_2NiO_(4+δ)粉末均形成了单相Ruddlesden-Popper结构并且非化学计量氧系数高达0.16。600~750℃区间内La_2NiO_(4+δ)的电导率达到了90S/cm左右,略低于氧电极材料对电导率的要求—100S/cm以上。同时,相较于传统的氧电极材料-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF),La_2NiO_(4+δ)表现出更好的催化活性,这主要归因于更好的氧表面交换性能。此外,La_2NiO_(4+δ)既可以在SOFC模式下工作,也可以在SOEC模式下工作。当工作在SOFC模式下时,48h内电极性能保持稳定;但工作在SOEC模式下时,电极性能在初始阶段发生剧烈衰减,随后才保持稳定。  相似文献   

9.
利用固相反应法在1 300℃下合成La_(0.8)Ca_(0.2)Fe_(0.5)X_(0.5)O_3(X=Fe、Cu、Cr、Mn)氧化物,并对它们在近红外波段的发射率进行了研究和比较,通过XRD、XPS、FT-IR等对样品进行分析和表征。研究结果表明,合成的La_(0.8)Ca_(0.2)Fe_(0.5)X_(0.5)O_3型氧化物样品为单相正交晶系。掺杂后的试样较LaFeO_3在200~2 500nm近红外波段的发射率均提高60%以上,其中Ca-CrCa-CuCaCa-Mn不掺,可能是掺杂引入Fe~(4+)杂质能级增强了自由载流子浓度及其带隙之间的跃迁,不同元素掺杂引起Fe~(3+)Fe~(4+)的跃迁程度与氧空位的浓度存在差异,导致不同掺杂元素发射率不同。La_(0.8)Ca_(0.2)Fe_(0.5)X_(0.5)O_3型氧化物材料均具有优异的近红外辐射性能,能够在高温热工节能领域发挥作用。  相似文献   

10.
采用流延–共压–共烧结法制备了具有多孔|致密|多孔Zr_(0.84)Y_(0.16)O_(2–δ)-La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3–δ)(YSZ-LSCF)结构的透氧膜和多孔YSZ-LSCF|致密YSZ-LSCF|致密YSZ|致密YSZ-LSCF|多孔YSZ-LSCF结构的固体氧化物燃料电池。采用浸渍法在多孔层内壁上沉积了具有高催化活性的LaNi_(0.6)Fe_(0.4)O_(3–δ)(LNF)纳米颗粒,随着LNF浸渍量的提高,会在多孔层内壁上形成连续的导电网格,增加电化学反应活性位点,进而显著改善电极性能。当LNF浸渍量为12wt%时,电极性能达到最优,在800℃时阴极和阳极极化阻抗分别为0.26和0.08?·cm~2,在空气/CH_4梯度中氧渗透速率为7.6 mL/(cm~2·min),比未浸渍前提高了14倍。阻抗谱分析表明空气侧氧还原反应中的电荷转移反应是氧渗透过程的速率控制步骤。  相似文献   

11.
利用简单的溶剂热法制备LaFeO_3、La_(0.8)Sr_(0.2)FeO_(3-δ)以及非化学计量的La_(0.8)Sr_(0.2)FeO_(3-δ)(x=0.97,1.03)纳米颗粒。采用XRD、TEM、UV-Vis、XPS等手段对样品的形貌和结构进行表征,以孔雀石绿(MG)光降解为模型反应,在最大吸收波长下(616.9nm)考察材料的光催化性能。结果表明:Sr~(2+)的掺入减小了晶粒尺寸,致使晶体产生晶格畸变并形成氧空位V··O,抑制电子-空穴重组,增大量子效率;掺入Sr~(2+)并改变非化学计量,使得催化剂在可见光区域有较强的光吸收,比表面积增大,其中(La_(0.8)Sr_(0.2))1.03FeO_(3-δ)的比表面积最大(20.164 4m2/g),可见光降解效率也最高(83.8%)。Sr~(2+)掺杂及非化学计量LaFeO_3的可见光催化活性均高于纯LaFeO_3。  相似文献   

12.
采用络合燃烧法制备了两种组成不同的阴极材料La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)和La_(0.54)Sr_(0.44)Co_(0.2)Fe_(0.8)-O_(3-δ),并组装成单元电池,研究了阴极材料A位组成变化对其离子导电能力和固体氧化物燃料电池电性能的影响。研究结果表明增加A位的Sr含量并降低La含量,同时使A位缺位可显著提高其氧离子电导率,从而降低阴极的极化电阻,提升电池的电性能。其机理在于A位组成发生上述变化可以在材料中引入更多的氧空位,同时由于晶胞体积增大,氧空位的活动能力增强,从而使得氧离子在材料内部更容易迁移。  相似文献   

13.
通过溶胶-凝胶法制备了一种新型钾离子掺杂钙钛矿透氧膜材料K_(0.1)Sr_(0.9)Co_(0.8)Fe_(0.2)O_(3-δ)(KSCF),并系统考察了该透氧膜材料的透氧量、稳定性和速率控制步骤等.XRD表征显示,钾离子在钙钛矿A位掺杂量低于或等于10%不会改变KSCF立方钙钛矿结构.SEM分析显示,KSCF膜片在1 220℃焙烧可高度致密,并且KSCF长期放置仍然保持了高机械强度,不会出现类似SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF)材料的粉化解体.氧渗透实验结果表明,操作温度的升高、膜片厚度的降低以及吹扫气流速的增加均有利于膜片透氧量的提升,厚度为0.5 mm的KSCF膜片在950℃时的透氧量可达2.65 mL/(cm~2·min).对比实验表明,基于同样测试条件KSCF透氧膜的透氧量比SCF材料的透氧量更高.通过对KSCF膜片的速率控制步骤考察可以发现,当KSCF透氧膜膜片厚度低于0.7 mm时,其透氧过程为表面交换控制,当膜片厚度高于0.7 mm时,其透氧过程则会转化为体相扩散控制.  相似文献   

14.
研究了Nd_2NiO_(4+δ)(NNO)-Ce_(0.8)Gd_(0.2)O_(2–δ)(CGO)复合化合物在中温固体氧化物燃料电池的性能,包括NNO-CGO复合阴极的烧结温度以及复合比例。采用流延法、丝网印刷法和高温烧结法相结合制备了尺寸为50 mm×50 mm的平板式NiO-YSZ阳极支撑SOFC。单电池是由Ni O-YSZ阳极支撑层、Ni O-YSZ阳极功能层、YSZ电解质层,CGO阻挡层,NNO-CGO复合阴极层以及La_(0.6)Sr_(0.4)CoO_(3–δ)(LSC)集流层共同组成。研究结果表明,当70NNO-30CGO复合阴极烧结温度为1000℃,单电池在800℃展现出最大功率密度385 mW/cm~2(0.7 V),欧姆阻抗、极化阻抗和面积比电阻分别为0.31、0.266和0.576?·cm~2。电化学阻抗分析结果表明,电荷转移阻抗是电池极化阻抗的主要来源。测试后电池截面的SEM观察结果显示电池各层之间均展现出良好的烧结结合。同时,与前期研究结果比较可以发现,具有相同复合阴极层的电池增加CGO阻挡层后功率密度下降,欧姆阻抗增加,但极化阻抗却降低。  相似文献   

15.
利用射频磁控溅射法在Pt(200)/TiO_2/SiO_2/Si(100)衬底上沉积Ba_(0.8)Sr_(0.2)TiO_3/CoFe_2O_4异质结层状多铁磁电耦合复合薄膜。Ba_(0.8)Sr_(0.2)TiO_3/CoFe_2O_4异质结复合薄膜为多晶,由钙钛矿Ba_(0.8)Sr_(0.2)TiO_3相和尖晶石CoFe_2O_4相组成。复合薄膜表现为良好的铁电性和铁磁性共存。在测量磁场平行于样品表面情况下测得的复合薄膜的饱和磁化强度(M_s)、剩余磁化强度(M_r)值要大于在测量磁场垂直于样品表面时测得的M_s、M_r值。另外,复合薄膜具有直接的磁电耦合效应,磁电电压系数αE先随着偏置磁场H_(dc)的增大而增大,当偏置磁场H_(dc)增加到445.8kA/m后,αE反而随偏置磁场的增加而减少。当偏置磁场H_(dc)=445.8kA/m时,复合薄膜具有最大的磁电电压系数αE=18.8mV/A。  相似文献   

16.
采用固相法合成了Ba与Ga共掺杂的Li_7La_3Zr_2O_(12)(LLZO)石榴石型固态电解质粉末,再结合常压烧结制备了Ba、Ga共掺杂LLZO样品。采用X射线衍射、扫描电镜、能谱分析和交流阻抗法对样品的物相结构、微观形貌、成分分布及电导率进行了表征。结果表明,在烧结温度1 100℃下得到了立方相的LLZO固态电解质。当Ga的含量在LLZO化学式中为0.15,Ba掺杂量从0增加至0.15(Ga_(0.15)Ba_x-Li_(6.55+x)La_(3-x)Zr_2O_(12),x=0~0.15)时,LLZO样品的平均晶粒尺寸从14μm下降到4μm,30℃时晶界电导率由1.54×10~(-5)S·cm~(-1)提升到2.22×10~(-4)S·cm~(-1)。Ba作为一种烧结剂,改善了材料的烧结性能,降低了材料的平均晶粒尺寸,使晶粒与晶粒连接得更紧密。Li_(6.7)Ga_(0.15)La_(2.85)Ba_(0.15)Zr_2O_(12)样品在30℃下的总电导率为2.11×10~(-4)S·cm~(-1),远高于单独掺杂Ga时Li_(6.55)Ga_(0.15)La_3Zr_2O_(12)样品的总电导率(σ=1.40×10~(-5)S·cm~(-1)),由此可见,Ba、Ga共掺杂极大地提高了LLZO的锂离子电导率。  相似文献   

17.
《中国粉体技术》2017,(4):58-61
采用水热合成方法制备了Ce_(0.8)Sm_(0.2)O_(1.9)电解质材料,水热合成的温度范围为120~180℃。使用X射线衍射、扫描电镜及交流阻抗谱技术,分别表征了电解质粉体及电解质粉体的烧结样品。研究发现,电解质粉体的晶粒尺寸在13 nm左右,在140℃合成的Ce_(0.8)Sm_(0.2)O_(1.9)粉体具有更好的烧结性能和更高的离子电导率。  相似文献   

18.
La0.9Sr0.1Ga0.8Mg0.2Ox(LSGM)粉体在1000-1500℃烧结4 h得到不同LSGM样品,对各样品进行了各项物理和电学特性测试。结果表明,样品的线收缩率和相对密度随烧结温度的升高而增加,1500℃烧结4 h的样品达到最大的线收缩率和相对密度,分别为24.8%和97%。1250-1500℃烧结4 h样品物相单一,结晶良好,1000℃烧结4 h的样品则存在较多杂相。各样品的电导率随测试温度升高而增大,1400℃烧结4 h的样品在各测试温度下都具有最大的电导率,800℃时,其电导率约为0.093 S/cm。在此研究基础上,采用丝网印刷技术制备了基于LSGM的小孔扩散型极限电流氧传感器,并测得其I-V特性曲线和时间响应特性。结果显示,该传感器的I-V曲线存在较好的极限电流平台,且极限电流和氧浓度之间存在良好的线性关系。响应和恢复时间较短,分别为10-15 s和15-20 s,重复性较好。  相似文献   

19.
采用溶胶-凝胶法制备Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3–δ)(BSCF)粉体后,使用Ce_(0.9)Gd_(0.1)O_(2–δ)(GDC)溶胶包裹BSCF粉的方法制备疏松多孔的BSCF-x GDC(x=30wt%,40wt%,50wt%)复相阴极。通过X射线衍射仪、场发射扫描电镜和透射电镜对复相阴极的物相组成、单电池断面形貌及GDC对BSCF颗粒的包裹形貌进行表征。利用阻抗谱测试研究了复相阴极材料的电化学性能,讨论了掺入GDC量对阴极性能的影响。结果表明:通过GDC溶胶包裹BSCF粉体的制备方法改善了阴极的电化学性能,在同一温度下,BSCF-40GDC阴极的极化电阻最小,在650℃时阴极极化阻抗约为0.397?·cm~2;以BSCF-40GDC为阴极制备的单电池,以H_2+3%H_2O为燃料气、空气为氧化气体,650℃下电池的最大功率密度为0.514 W/cm~2,欧姆电阻为0.257?·cm~2,两极极化电阻为0.0588?·cm2。  相似文献   

20.
采用溶胶-凝胶法结合二次高温烧结技术,制备了锰系钙钛矿催化剂。利用XRD和EDS对催化剂的物相与元素组成进行了分析,并利用电化学分析方法研究了催化剂的氧还原催化性能。XRD与EDS结果表明,N_2气氛二次烧结不改变La_(0.7)Sr_(0.3)MnO_3物相组成,但NH3气氛二次烧结会造成La_(0.7)Sr_(0.3)MnO_3分解。电化学结果表明,N_2气氛二次烧结催化剂的氧还原催化活性高于NH3气氛二次烧结催化剂,其氧还原起始电势与极限电流分别为0.028V(vs.Hg/HgO)和2.181mA·cm~(-2)(2 000r/min)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号