首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对自行研制的NACA4415翼型水平轴风力机,通过流固耦合的数值模拟计算方法,考虑气动力和离心力以及两者耦合作用,选取叶片最大弦长、中部弦长、气动中心线展向以及最大应力点位置,分析风力机叶片在不同工况下的应力特性分布规律。结果表明:在气动力作用下,叶片相同弦长位置处迎风面应力小于背风面应力,且随尖速比和入流风速增大而增大,最大应力点位置随着尖速比增大沿翼展向外且靠近叶片前缘方向延伸;在离心力作用下,叶片相同弦长位置处迎风面应力大于背风面应力,且随尖速比增大而增大,而最大应力点均在叶根最大弦长位置(9.93 mm,10.80 mm,-126.33 mm);在耦合作用下,叶片相同弦长位置处迎风面应力大于背风面应力,随尖速比和入流风速增大而增大,且依次大于气动力和离心力产生的应力,而最大应力点均在叶根最大弦长位置。仿真结果对于风力机翼型的选择及优化设计具有重要的理论意义及参考价值。  相似文献   

2.
为了获悉风轮主要声源区域的流动机理,在风洞开口段,在不同风速和尖速比下,文章对风轮展向X/C=0.5区域不同相对弦长处的流场进行了PIV测试。测试结果表明:由于翼型表面发生流动分离导致流体速度脉动,雷诺应力迅速增加,使叶片与来流相互作用产生压力脉冲;随着相对弦长的增加,雷诺应力均有不同程度的增大,当X/C为0.4~0.8时,雷诺应力的变化最为明显;对比不同风速、尖速比、相对弦长处的雷诺应力数据发现,随着尖速比的增加,雷诺应力增大最明显的区域向前缘移动,流动分离位置提前,而风速变化对流动分离位置没有影响;发生流动分离后的主要声源区域的雷诺应力呈现单峰值,流体脉动程度较剧烈;对比不同工况下主要声源最大声压级和X/C=1处中心最大雷诺应力值发现,两者变化趋势一致且易受尖速比变化的影响。文章以实验测试的方法揭示了风轮主要声源区域雷诺应力表现的流动特征,研究成果对于叶片的优化设计和降噪方法的改进提供了可行的解决思路。  相似文献   

3.
利用有限元理论,基于Ansys Workbench工作平台,针对某小型水平轴风力发电机组,计算了不同工况时叶片应变特性的变化。计算结果显示:叶片在气动力作用下最大应变位置位于叶根与叶片径向的0.65 R处、叶片在离心力作用下最大应变位置位于叶根处;在恒定来流风速、低尖速比时,气动力引起的叶片应变大于离心力引起的应变,但随着尖速比的增加,离心力引起的应变值大于气动力作用时的应变值,其原因为离心力正比于尖速比和风速乘积的二次方,而气动载荷仅正比于风速的二次方;气动力与离心力耦合作用时,最大应变位置位于叶根处,离心力与气动力耦合作用时引起的应变不等于离心力与气动力单独作用引起应变之和。研究结果可为风力机叶片机械强度设计提供一定的理论支撑。  相似文献   

4.
管飞  高志鹰  汪建文 《太阳能学报》2016,37(8):2111-2117
在直流低速风洞中,应用BK公司的60通道圆形声阵列、丹麦BK公司PULSE结构振动测试分析系统及应力应变动态旋转遥测技术,针对直径1.4 m的某S翼型水平轴风力机风轮模型开展实验得出不同工况下,噪声总声压级分布特征以及噪声源位置分布规律及沿翼展方向上应变幅值的变化规律。实验结果表明:风轮旋转时,噪声源能量最大区域主要集中在叶片中部(r/R=0.54),且不会随风速和尖速比的改变而改变最大噪声源位置;噪声源能量最大区域主要发生在叶片振幅最大区域处;应变最大幅值区域主要集中在叶片中部(r/R=0.51处),最大幅值区域不随风速和尖速比的改变而改变。利用SPSS统计分析软件,对噪声声压级和应变幅值做沿叶片展向方向上的互相关分析得到,在0.17R~0.74R区域内,相关系数大于0.8呈高度相关,0.85R区域附近的相关系数为0.782,呈中度相关。  相似文献   

5.
风力机叶片周围流场的PIV测试   总被引:2,自引:0,他引:2  
在直流式低速风洞中,应用二维PIV系统,对水平轴风力机叶片周围流场进行了测试,揭示了在设计风速下,气流以相对风速流过叶片时,叶片周围流场的分布规律.在各个测试截面内,吸力面气流速度均高于相对风速,压力面气流速度均低于相对风速;气流沿叶片表面流动未发生分离时,叶片吸力面速度最大区域位于截面翼型最大厚度处;发生分离时,越靠近叶根位置,吸力面速度最大区域越向下游迁移,且分离点越靠近翼型前缘;叶尖部位存在从翼型后缘看为逆时针旋转的涡流,呈螺旋状向下游传播.PIV测试分析为叶片最佳空气动力学特性的设计提供了指导,并取得了大空间单烟雾发生器直流风洞的PIV实验经验.  相似文献   

6.
基于应力应变动态旋转遥测技术,针对直径1.4 m的NACA4415翼型水平轴风力机风轮模型开展动态应变实验,得出不同工况下叶片气动中心线上各个测点应变值随气动力和离心力的变化规律。试验结果表明:离心力对叶片表面动态应变的影响显著强于气动力;气动力对叶片表面动态应变的影响由叶根至叶尖逐渐增强;叶片气动中心线上各点应变值随离心力(转速)的升高而增大,且其生长特性近似成线性。从叶根至叶尖,气动中心线上各测点应变值随离心力变化的敏感性呈逐渐下降趋势;同一工况下,从叶根至叶尖,叶片气动中心线上各点应变值逐渐减小,且其衰减规律成非线性曲线形式。相关研究成果,可为风力机结构安全性设计提供一定的理论支撑。  相似文献   

7.
针对含裂纹损伤风力机在运行过程中产生的失效现象,将切变来流作为入口条件,基于流固耦合原理,分析含不同形式裂纹损伤的风力机叶片应力分布规律。通过无人机现场实验得知,裂纹主要集中于叶根(r/R=0.10截面)和叶中(r/R=0.50截面)后缘部位。单叶片在30°方位角时应力最大,额定风速下分布于叶根的裂纹受力最大,为33.34 MPa。强风风速下分布于叶中的裂纹受力最大,为44.31 MPa。重力载荷主要影响叶根部位的受力,气动载荷则主要作用于叶中,风速越大,叶中部位的裂纹越容易产生扩展。同时,沿弦向分布的裂纹,其扩展趋势最强。对于叶根处裂纹而言,若使叶片产生失效,裂纹长度需达到弦长的1/2、深度需达到叶片厚度的1/2;对于叶中处裂纹而言,若使叶片产生失效,裂纹长度需达到弦长的3/8、深度需达到叶片厚度的1/3。  相似文献   

8.
常规风力机叶片的优化设计都是从二维翼型开始的,且翼型总是以升阻比最大为优化目标。然而,二维翼型的升阻比最大和三维叶片的高风能利用率与低气动载荷有本质的不同,采用以往的叶片优化方法常常会在提高风能利用率的同时,使叶片所受的气动载荷也提高。针对这一问题,提出基于多岛遗传算法和动量叶素理论,在给定风况条件下,以加权风能利用率最高与气动载荷最小为目标函数,以叶片各个截面的翼型型线及扭角作为设计变量,对三维叶片开展多目标优化方法设计研究。并对某实际NREL Phase VI叶片进行优化设计,结果表明:在给定风况下相比原叶片,优化叶片在风能利用率提升了3.06%的基础上,叶根弯矩降低了11.68%。在变转速与变风况下,优化叶片的气动效率整体提升,叶根弯矩明显降低。  相似文献   

9.
以课题组自行研制的风力机为研究对象,通过动态旋转平台模拟风向动态变化,研究在风向动态变化情况下塔顶和塔底的应力变化情况,同时分析风向动态变化对塔架应力的影响。对比发现:随着风向变化角速度的增大,最大主应力值呈先增大后减小的趋势,风向变化角速度为0.5(°)/s时最大主应力值变化程度最小,风向变化角速度为1(°)/s时,塔架稳定性最不利。随着风向变化角度的增大,最大主应力值先增大后减小,且最小主应力值随风向变化角度的增大而减小,风向变化角度为60°时最大主应力值最小,风向变化角度在30°以内应力波动较明显。  相似文献   

10.
史先路  赵凡  赵凯  赵军华 《可再生能源》2023,(12):1612-1618
为阐明转子叶尖损失效应以及动态失速效应对风力机气动性能预测的影响,文章采用计算流体力学(CFD)以及叶素动量理论(BEM)两种方法分析预测了不同风场条件下的叶片气动性能,研究了三维旋转效应下叶片表面的非定常气动特性。结果表明:在离心力和科氏力作用下,叶片吸力面发生流动分离,随着风速的增加,失速区域逐渐增大;叶片翼型截面前缘吸力侧受风速影响较大;在非定常来流条件下,叶尖部位尤其是前缘对来流敏感程度较高。通过不同叶尖损失校正模型对叶片载荷的预测结果对比可以看出,针对BEM进行的叶根叶尖修正计算结果更接近于CFD模拟结果,但是,在叶根和叶尖部位仍存在一定偏差。  相似文献   

11.
通过对直叶片垂直轴风力机在不同翼型、尖速比和实度组合状态下改变其叶片安装角得到的模型进行流场计算,总结以上3种情形下不同安装角对直叶片垂直轴风力机气动性能的影响:在以上3种情形下,负安装角对其气动性能不利;最佳气动性能安装角为1°~3°;安装角对其性能的影响相对有限(NACA0015,尖速比λ=1.5时,功率系数CP值从31.3%增加到34.5%),翼型厚度对气动性能的影响较大(21%厚度翼型,其C_P值约为40%),欲得到更好的CP值,最好通过改变翼型或增加翼型厚度来实现;当叶片翼型的相对厚度较小或工况为高尖速比下时,有必要通过改变安装角改善风力机的性能。  相似文献   

12.
《可再生能源》2013,(8):41-44
采用大涡模拟(LES)和标准κ-ε模型求解风力机近尾迹区域的非定常流动,获得涡量场信息和声源项信息,采用快速傅里叶变换将源项的时域信息转换为频域信息,利用K-FWH声学模型预测其噪声特性。结果表明,风轮在旋转过程中,风力机风轮下游同一截面在不同尖速比下涡量分布规律是从计算截面中心沿半径增大的方向分别经过3个压力脉动变化强烈的区域,它们是计算圆心区域、中心涡区域、叶尖涡区域,计算点在上述3个区域都会出现涡量的峰值;在同一尖速比不同截面下,风轮近尾迹区域涡量的变化规律是沿着X轴正方向远离风轮旋转平面计算截面上的中心涡区域和叶尖涡区域的半径增大,不断向外迁移;计算截面的最大声压级的数值计算值和试验值吻合较好,证明了噪声计算模型的正确性。  相似文献   

13.
针对额定功率为100 W的水平轴风力机叶片为研究对象构建实体模型,利用ANSYS有限元方法,模拟分析叶片在气动力、离心力及重力作用下的应力特征,最后由实验数据和模拟计算做对比分析。额定工况单独载荷作用研究,得出叶片应力主要受气动力与离心力的作用,重力影响不大;施加复合载荷,同一截面相对位置,叶片迎风面应力值大于背风面应力值,且随风速增加应力值逐渐增大,最大应力值处始终保持最大。  相似文献   

14.
为得到风力机功率、转矩和推力等性能随尖速比和翼型升阻比变化的极限公式,需求解叶片的理想扭角和弦长沿翼展变化的解析表达式,同时这项研究也可为叶片外形设计提供理论参考。为此首先从效率最大化的原则出发,用极值的微分算法证明最佳攻角就是使翼型升阻比最大的攻角;其次利用最佳攻角和入流角公式推导出叶片理想扭角沿展向的解析表达式;然后根据动量-叶素理论,推导出叶片理想弦长沿展向的解析表达式。研究表明:叶片理想扭角是设计尖速比、最佳攻角和风轮半径的函数,叶片理想弦长是设计尖速比、风轮半径以及对应最佳攻角的升力和阻力系数的函数。这两个表达式均可表示为显函数的形式。  相似文献   

15.
为了解不对称翼型叶片的正反安装对垂直轴潮流水轮机水动力性能的影响,运用CFD软件技术,建立了不对称叶片正反安装的潮流水轮机模型,分析了不对称叶片在正反两种安装方式下,叶片压力面和吸力面压力系数随叶片相位角不同而发生的变化,同时利用效率公式计算得到了效率。结果表明,叶片的正反安装对水轮机的水动力性能影响较大,当叶片正装即不对称翼型叶片凸向朝外时,垂直轴潮流水轮机效率优于叶片反装时,叶片在相位角为0°~120°区间转动时,转轮扭矩先增大后减小,在60°、180°、300°时得到最大扭矩。  相似文献   

16.
首先通过理论分析,研究风力机偏航运行时叶片各翼型的攻角变化规律,建立翼型俯仰运动模型;然后基于大涡模拟(LES)方法,研究偏航工况下叶片翼型的动态气动特性。结果表明:风轮在偏航工况下运行时,叶片各截面翼型攻角变化呈近似的正余弦规律;叶片不同展向位置翼型均发生不同程度的流动分离,出现动态失速现象,越靠近叶根,由偏航引起的动态迟滞效应越明显;翼型俯仰过程中,吸力面前缘分离泡的动态变化过程,导致吸力面前缘压力出现小范围的剧烈振荡,增大流动的不稳定性。  相似文献   

17.
《水电能源科学》2021,39(5):184-188
为研究低温条件下叶片覆冰对风电机组关键部位振动频率、翼型气动性能、发电功率、极限载荷和疲劳载荷的影响,对某3.XMW风电机组在覆冰、未覆冰条件下,基于IEC61400-1标准、线性疲劳累计损伤理论、雨流循环计数法,通过仿真软件建立该机型覆冰、未覆冰两种模型并进行计算。计算结果表明,叶片覆冰导致叶片和塔筒振动降低,翼型升力系数降低,阻力系数升高,发电功率降低,覆冰条件下的叶根、旋转轮毂中心、固定轮毂中心、偏航中心、塔筒底部极限载荷和等效疲劳载荷增大,最大累计循环次数降低,其中叶片挥舞载荷增幅最大。研究成果可为叶片覆冰时机组优化提供参考。  相似文献   

18.
基于计算流体力学方法(CFD),通过求解URANS方程与SST湍流模型,对Tj?reborg 2 MW风力机风轮在偏航角0°、10°、30°工况下的气动特性进行计算,结果表明数值计算的功率与实验值吻合较好。分析不同偏航角下风轮的功率、推力、叶片各截面切向力、法向力载荷和压力分布的变化规律。偏航工况下一个旋转周期内风轮功率、推力呈现3P波动性质,叶片气动载荷沿旋转方向呈现正弦交变性质,最大载荷发生在方位角90°附近区域。  相似文献   

19.
《动力工程学报》2016,(9):739-745
为准确研究风力机高风速非定常气动特性,以NREL Phase VI实验叶片为算例,考虑三维旋转效应和尾缘流动分离现象,建立了Du-Selig三维失速延迟模型与Kirchhoff-Helmholz尾缘分离预估模型耦合的三维尾缘分离预估模型,并与升力面自由涡尾迹法结合,分析了叶片升力面弦向不同涡格数对模拟准确性的影响;基于尾缘分离因子的周向分布规律,通过独立变桨引入风轮旋转半周期的正弦波桨距角增量,抵消相对来流速度变化引起的攻角增大,以优化风力机气动性能.结果表明:升力面弦向采用2涡格的三维尾缘分离预估模型来模拟叶片法向力系数和弦向力系数最为精确;在每个旋转周期内,叶片尾缘分离因子在180°~360°方位角内较大,且在270°达到最大;经独立变桨后,尾缘分离因子得到减小,减小幅度与变桨幅值成正比,且变桨幅值为5°时,叶片主轴扭矩和挥舞力矩达到最佳优化效果.  相似文献   

20.
采用计算流体动力学(CFD)方法对MEXICO试验风力机叶片不同部位翼型在旋转状态下的升阻力系数进行计算,并与试验数据进行比较分析,验证了CFD方法能够准确预测翼型在旋转状态下的升阻力系数。通过采用尾缘对称加厚到5%翼型弦长的DU 97-W-300-05翼型和对应的尾缘未加厚的DU 97-W-300翼型设计,得到沿叶片径向具有相同弦长的风力机叶片,并采用CFD方法对该叶片在旋转状态下的气动特性进行计算。结果表明:在旋转状态下,当攻角小于15°时,尾缘加厚翼型的升力系数比相对应的尾缘未加厚翼型大10%左右;尾缘加厚翼型在旋转状态下的粗糙度敏感性好于相对应的尾缘未加厚翼型;随半径增大,尾缘加厚翼型和对应的尾缘未加厚翼型的升力系数都增大,但失速提前,尾缘加厚翼型升力系数增大得更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号