首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large‐scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)‐rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb–Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less‐toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point.  相似文献   

2.

Charge-transporting processable layers at a low temperature is a challenge for fabricating novel, highly stable and flexible optoelectronic devices. In fact, the crystallization of metal oxide usually needs to be processed under a high-temperature to obtain excellent semiconducting properties. In this work, Sn-doped ZnO (TZO) thin films, as electron transporting layers (ETLs) in perovskite solar cells, were prepared via sol–gel method at a temperature of less than 180 °C. The effects of annealing temperature on the properties of TZO thin films were investigated. It was found that the electrical properties of the TZO films were improved with increasing annealing temperature. In addition, an elemental composition analysis revealed that a temperature of only 140 °C sufficed for converting the precursor gel film into TZO film. The perovskite solar cell, which utilized a low-temperature TZO thin film, yielded a better power conversion efficiency than one with high-temperature ETLs (180 °C). These results imply that discovering low-temperature ETL processing for sol–gel enables good-quality metal oxide ETL, which can also be used in flexible solar cell applications.

  相似文献   

3.
In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films by RF magnetron sputtering on platinized silicon (Pt/Ti/SiO2/Si) substrate. Sputtering was done in pure argon at 100 W RF power without external substrate heating. X-ray diffraction studies were performed on the films to study the effect of post-deposition furnace annealing temperature and time on the perovskite phase formation of PLZT. Annealing at 650 °C for 2 h was found to be optimum for the preparation of PLZT films in pure perovskite phase. The effect of different annealing conditions on surface morphology of the films was examined using AFM. The dielectric, ferroelectric and electrical properties of these films were also investigated in detail as a function of different annealing conditions. The pure perovskite film exhibits better properties than the other films which have some fraction of unwanted pyrochlore phase. The remanent polarization for pure perovskite film was found to be ∼29 μC/cm2 which is almost double compared to the films having mixed phases. The dc resistivity of the pure perovskite film was found to be 7.7 × 1010 Ω cm at the electric field of ∼80 kV/cm.  相似文献   

4.
The interface engineering plays a key role in controlled optoelectronic properties of perovskite photovoltaic devices,and thus the electron transport layer(ETL) material with tailored optoelectronic properties remains a challenge for achieving high photovoltaic performance of planar perovskite solar cells(PSCs).Here,the fine and crystalline zirconium stanate(ZrSnO_4) nanoparticles(NPs) was synthesized at low temperature,and its optoelectronic properties are systematically investigated.Benefiting from the favorable electronic structure of ZrSnO_4 NPs for applications in ETL,efficient electron transport and extraction with suppre s sed charge recombination are achieved at the interface of perovskite layer.As a result,the optimized ZrSnO_4 NPs synthesized at room-temperature deliver the optimized power conversion efficiency up to 16.76% with acceptable stability.This work opens up a new class of ternary metal oxide for the use in ETL of the planar PSCs and should pave the way toward designing new interfacial materials for practical optoelectronic devices.  相似文献   

5.
As well known, the spreading of a liquid metal droplet on a solid metal is very sensitive to the presence of chemical heterogeneities on the solid metal. In this study, wetting experiments with liquid lead on heterogeneous surfaces composed of iron and silicon oxide particles or films were performed using the dispensed drop technique. High purity iron and binary iron–silicon substrates with different silicon contents were studied. Before the wetting experiments, the substrates are annealed at 850 °C in a N2–H2 atmosphere in order to reduce iron oxides and to form silicon oxide particles or films on the surface. The liquid lead droplet is then released onto the metallic substrate partly or wholly covered by the oxides. The spreading of the liquid metal droplet strongly depends on the surface area fraction covered by the oxides.  相似文献   

6.
A fullerene derivative (α‐bis‐PCBM) is purified from an as‐produced bis‐phenyl‐C61‐butyric acid methyl ester (bis‐[60]PCBM) isomer mixture by preparative peak‐recycling, high‐performance liquid chromatography, and is employed as a templating agent for solution processing of metal halide perovskite films via an antisolvent method. The resulting α‐bis‐PCBM‐containing perovskite solar cells achieve better stability, efficiency, and reproducibility when compared with analogous cells containing PCBM. α‐bis‐PCBM fills the vacancies and grain boundaries of the perovskite film, enhancing the crystallization of perovskites and addressing the issue of slow electron extraction. In addition, α‐bis‐PCBM resists the ingression of moisture and passivates voids or pinholes generated in the hole‐transporting layer. As a result, a power conversion efficiency (PCE) of 20.8% is obtained, compared with 19.9% by PCBM, and is accompanied by excellent stability under heat and simulated sunlight. The PCE of unsealed devices dropped by less than 10% in ambient air (40% RH) after 44 d at 65 °C, and by 4% after 600 h under continuous full‐sun illumination and maximum power point tracking, respectively.  相似文献   

7.
Large‐scale high‐quality perovskite thin films are crucial to produce high‐performance perovskite solar cells. However, for perovskite films fabricated by solvent‐rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low‐temperature soft‐cover deposition (LT‐SCD) method is presented, where the thermal convection‐induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection‐induced‐defects‐free perovskite films are obtained on an area of 12 cm2, which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm2. This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low‐temperature processing. Hence, the present LT‐SCD technology provides a new non‐spin‐coating route to the deposition of large‐area uniform perovskite films for both rigid and flexible perovskite devices.  相似文献   

8.
Resistive random access memories can potentially open a niche area in memory technology applications by combining the advantages of the long endurance of dynamic random‐access memory and the long retention time of flash memories. Recently, resistive memory devices based on organo‐metal halide perovskite materials have demonstrated outstanding memory properties, such as a low‐voltage operation and a high ON/OFF ratio; such properties are essential requirements for low power consumption in developing practical memory devices. In this study, a nonhalide lead source is employed to deposit perovskite films via a simple single‐step spin‐coating method for fabricating unipolar resistive memory devices in a cross‐bar array architecture. These unipolar perovskite memory devices achieve a high ON/OFF ratio up to 108 with a relatively low operation voltage, a large endurance, and long retention times. The high‐yield device fabrication based on the solution‐process demonstrated here will be a step toward achieving low‐cost and high‐density practical perovskite memory devices.  相似文献   

9.
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution‐processed perovskite films. Here, solution‐phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in‐plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole‐transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high‐performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.  相似文献   

10.
Despite the high power conversion efficiency (PCE) of perovskite solar cells (PSCs), poor long‐term stability is one of the main obstacles preventing their commercialization. Several approaches to enhance the stability of PSCs have been proposed. However, an accelerating stability test of PSCs at high temperature under the operating conditions in ambient air remains still to be demonstrated. Herein, interface‐engineered stable PSCs with inorganic charge‐transport layers are shown. The highly conductive Al‐doped ZnO films act as efficient electron‐transporting layers as well as dense passivation layers. This layer prevents underneath perovskite from moisture contact, evaporation of components, and reaction with a metal electrode. Finally, inverted‐type PSCs with inorganic charge‐transport layers exhibit a PCE of 18.45% and retain 86.7% of the initial efficiency for 500 h under continuous 1 Sun illumination at 85 °C in ambient air with electrical biases (at maximum power point tracking).  相似文献   

11.
Thin films of TM-X-N (TM stands for early transition metal and X = Si, Al, etc.) are used as protective coatings. The most investigated among the ternary composite systems is Ti-Si-N. The system Ti-Ge-N has been chosen to extend the knowledge about the formation of nanocomposite films. Ti-Ge-N thin films were deposited by reactive magnetron sputtering on Si and WC-Co substrates at Ts = 240 °C, from confocal Ti and Ge targets in mixed Ar/N2 atmosphere. The nitrogen partial pressure and the power on the Ti target were kept constant, while the power on the Ge target was varied in order to obtain various Ge concentrations in the films. No presence of Ge-N bonds was detected, while X-ray photoelectron spectroscopy measurements revealed the presence of Ti-Ge bonds. Transmission Electron Microscopy investigations have shown important changes induced by Ge addition in the morphology and structure of Ti-Ge-N films. Electron Energy-Loss Spectrometry study revealed a significant increase of Ge content at the grain boundaries. The segregation of Ge atoms to the TiN crystallite surface appears to be responsible for limitation of crystal growth and formation of a TiGey amorphous phase.  相似文献   

12.
In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution‐derived NiOx and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole‐free absorbing layers are also fabricated using MAPbI3 perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI3 perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.  相似文献   

13.
Lead iodide (PbI2) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.  相似文献   

14.
Minimization of defects and ion migration in organic–inorganic lead halide perovskite films is desirable for obtaining photovoltaic devices with high power conversion efficiency (PCE) and long‐term stability. However, achieving this target is still a challenge due to the lack of efficient multifunctional passivators. Herein, to address this issue, n‐type goethite (FeOOH) quantum dots (QDs) are introduced into the perovskite light‐absorption layer for achieving efficient and stable perovskite solar cells (PSCs). It is found that the iron, oxygen, and hydroxyl of FeOOH QDs can interact with iodine, lead, and methylamine, respectively. As a result, the crystallization kinetics process can be retarded, thereby resulting in high quality perovskite films with large grain size. Meanwhile, the trap states of perovskite can be effectively passivated via interaction with the under‐coordinated metal (Pb) cations, halide (I) anions on the perovskite crystal surface. Consequently, the PSCs with FeOOH QDs achieve a high efficiency close to 20% with negligible hysteresis. Most strikingly, the long‐term stability of PSCs is significantly enhanced. Furthermore, compared with the CH3NH3PbI3‐based device, a higher PCE of 21.0% is achieved for the device assembled with a Cs0.05FA0.81MA0.14PbBr0.45I2.55 perovskite layer.  相似文献   

15.
The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium and formamidinium mixed cations. Currently, high‐quality mixed‐cation perovskite thin films are normally made by use of antisolvent protocols. However, the widely used “antisolvent”‐assisted fabrication route suffers from challenges such as poor device reproducibility, toxic and hazardous organic solvent, and incompatibility with scalable fabrication process. Here, a simple dual‐source precursor approach is developed to fabricate high‐quality and mirror‐like mixed‐cation perovskite thin films without involving additional antisolvent process. By integrating the perovskite films into the planar heterojunction solar cells, a power conversion efficiency of 20.15% is achieved with negligible current density–voltage hysteresis. A stabilized power output approaching 20% is obtained at the maximum power point. These results shed light on fabricating highly efficient perovskite solar cells via a simple process, and pave the way for solar cell fabrication via scalable methods in the near future.  相似文献   

16.
Ordered 1D metal oxide structure is desirable in thin film solar cells owing to its excellent charge collection capability. However, the electron transfer in 1D electron transporting layer (ETL)‐based devices is still limited to a submicrometer‐long pathway that is vertical to the substrate. Here, an innovative closely packed rutile TiO2 nanowire (CRTNW) network parallel to the facet of fluorine‐doped tin oxide (FTO) substrate is reported, which can serve as a 1D nanoscale electron transport pathway for efficient perovskite solar cells (PSCs). The PSC constructed using newly prepared CRTNW ETL achieves an impressive power conversion efficiency of 21.10%, which can be attributed to the facilitated electron extraction induced by the favorable junctions formed at FTO/ETL and ETL/perovskite interfaces and also the suppressed charge recombination originating from improved perovskite morphology with large grains, flat surface, and good surface coverage. The bifacial contact junctions engineering also enables large‐area device fabrication. The PSC with 1 cm2 aperture yields an efficiency of 19.50% under one sun illumination. This work highlights the significance of controlling the orientation and packing density of the ordered 1D oxide nanostructured thin films for highly efficient optoelectronic devices in a large‐scale manner.  相似文献   

17.
Integration of solid state gas sensors and solid oxide fuel cells into third generation microelectronic products requires the development of unique fabrication methods. Highly porous electrodes, critical to the performance of many gas dependent devices, typically require harsh production methods and high sintering temperatures that are incompatible with a variety of platforms including those based on silicon or glass. In this study, an alternative procedure for overcoming these problems has been developed. It is based on the synthesis of nano-porous films at reduced fabrication temperatures by means of the Sacrificial Layer Pulsed Laser Deposition (SL-PLD). SL-PLD utilizes simultaneous oxide and carbon deposition to deposit thin dense films. These amorphous films are then transformed into nano-porous perovskite films by thermal annealing in ambient air at 600 ºC. In this paper, an alternative process for the development of nano-porous thin films at reduced fabrication temperatures is presented. It takes advantage of the low temperatures needed for both carbon burn-off and the structural transformation of many perovskite oxides. This alternative method for thin film fabrication opens the possibility for low temperature fabrication of porous ceramic materials.  相似文献   

18.
The perovskite structure microwave dielectric ceramic thin films have been deposited by radio frequency (RF) magnetron sputtering on SiO2(110) substrates. Subsequently, orthogonal analysis has been adopted to optimize the process parameters. The experimental results indicate that sputtering pressure has the greatest impact on comprehensive evaluation indicators such as the film quality, whereas sputtering power has a lower effect; the ratio of O2/Ar and substrate temperature have the least impact on the process. Thus, the optimal process parameters to prepare perovskite structure dielectric thin films by RF magnetron sputtering are as follows: 200 W of sputtering power, 0.25 Pa of sputtering pressure, Ar as working gas, and substrate temperature of 610 °C.  相似文献   

19.
Microstructure characterization of sol-gel derived PZT films   总被引:1,自引:0,他引:1  
The crystallization of sol-gel derived amorphous PZT films deposited on a MgO single-crystal substrate and a SiO2 glass substrate was examined. The pyrochlore crystallites, 5 nm in size, were homogeneously nucleated in the amorphous films at 350 °C. The nucleation temperature of pyrochlore did not depend on the type of substrate. Fine pyrochlore grains were stable even during annealing at high temperatures up to 600 °C. The perovskite formation temperature was dependent on the substrate, and was about 550 °C on the MgO single-crystal substrate and about 750 °C on the SiO2 glass substrate. The perovskite was heterogeneously nucleated preferentially at the substrate-film interface. Perovskite nucleation was more difficult at the SiO2 glass-film interface than at the MgO single crystal-film interface. The ease of nucleation reflected the perovskite formation temperature. Perovskite crystals grew fairly rapidly, once they were nucleated in the films. In the multiple-coated films, the interface between successive layers of PZT films was a favourable nucleation site of perovskite, and the columnar perovskite grains passing through the interface were often developed.  相似文献   

20.
Excess lead iodide (PbI2), as a defect passivation material in perovskite films, contributes to the longer carrier lifetime and reduced halide vacancies for high-efficiency perovskite solar cells. However, the random distribution of excess PbI2 also leads to accelerated degradation of the perovskite layer. Inspired by nanocrystal synthesis, here, a universal ligand-modulation technology is developed to modulate the shape and distribution of excess PbI2 in perovskite films. By adding certain ligands, perovskite films with vertically distributed PbI2 nanosheets between the grain boundaries are successfully achieved, which reduces the nonradiative recombination and trap density of the perovskite layer. Thus, the power conversion efficiency of the modulated device increases from 20% to 22% compared to the control device. In addition, benefiting from the vertical distribution of excess PbI2 and the hydrophobic nature of the surface ligands, the modulated devices exhibit much longer stability, retaining 72% of their initial efficiency after 360 h constant illumination under maximum power point tracking measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号