首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The boron nitride nanosheets (BNNSs)/aluminum nitride (AlN) composites were prepared by hot press sintering at 1600°C. The microstructure, mechanical properties, and thermal conductivity of the samples were measured, and the effect of adding BNNSs to AlN ceramics on the properties was studied. It is found that the addition of BNNSs can effectively improve the mechanical properties of AlN. When the additional amount is 1 wt%, the bending strength of the sample reaches the maximum value of 456.6 MPa, which is 23.1% higher than that of the AlN sample without BNNSs. The fracture toughness of the sample is 4.47 MPa m1/2, a 68.7% improvement over the sample without BNNSs. The composites obtained in the experiment have brilliant mechanical properties.  相似文献   

2.
To attain thermally conductive but electrically insulating polymer films, in this study, polyimide (PI) nanocomposite films with 1–30 wt% functionalized hexagonal boron nitride nanosheets (BNNSs) were fabricated via solution casting and following imidization. The microstructures, mechanical and thermal conductive properties of PI/BNNS nanocomposite films were examined by taking account of the relative content, anisotropic orientation, and interfacial interaction of BNNS and PI matrix. The scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry data revealed that BNNSs with hydroxy and amino functional groups have specific molecular interactions with PI matrix and they form stacked aggregates in the nanocomposite films with high BNNS loadings of 10–30 wt%. The tensile mechanical strength/modulus, thermal degradation temperatures, and thermal conductivity of the nanocomposite films were found to be significantly enhanced with increasing the BNNS loadings. For the nanocomposite films with 1–30 wt% BNNS loadings, the in-plane thermal conductivity was measured to be 1.82–2.38 W/mK, which were much higher than the out-of-plane values of 0.35–1.14 W/mK. The significant anisotropic thermal conductivity of the nanocomposite films was found to be owing to the synergistic anisotropic orientation effects of both BNNS and PI matrix. It is noticeable that the in-plane and out-of-plane thermal conductivity values of the nanocomposite film with 30 wt% BNNS were ~1.31 and ~3.35 times higher than those of neat PI film, respectively.  相似文献   

3.
The effects of boron nitride (BN) and aluminum nitride fillers on polyamide 6 (PA6) hybrid polymer composites were investigated. In particular, the thermal and electrical conductivity, thermal transition, thermal degradation, mechanical and morphological properties and chemical bonds characteristic of the materials with crystal structure of BN and aluminum nitride (AlN) filled PA6 prepared at different concentrations were characterized. Thermal conductivity of hybrid systems revealed a 1.6-fold gain compared to neat PA6. The highest thermal conductivity value was obtained for the composite containing 50 vol% additives (1.040 W/m K). A slight improvement in electrical conductive properties of composites appears and the highest value was obtained for the 50 vol% filled composite with only an increase by 3%. The microstructure of these composites revealed a homogeneous dispersion of AlN and BN additives in PA6 matrix. For all composites, one visible melting peak around 220°C related to the α-form crystals of PA6 was detected in correlation with the X-ray diffraction results. An improved thermal stability was obtained for 10 vol% AlN/BN filled PA6 composite (from 405.41°C to 409.68°C). The tensile strength results of all composites were found to be approximately 22% lower than pure PA6.  相似文献   

4.
The goal of this study is to compare thermal and mechanical properties of an epoxy resin system reinforced with SiC nanoparticles using both conventional thermal curing and microwave irradiation techniques. The microwave curing technique has shown potential benefits in processing polymeric nanocomposites by reducing the curing time without compromising the thermo‐mechanical performances of the materials. It was observed from this investigation that, the curing time was drastically reduced to ~30 min for microwave curing instead of 12 h room temperature curing with additional 6 h post curing at 75°C. Ductile behavior was more pronounced for microwave curing technique while thermal curing showed brittle like behavior as revealed from flexural test. The maximum strain to failure was increased by 25–40% for microwave‐cured nanocomposites over the room temperature cured nanocomposites for the same loading of nanofillers. The glass transition temperature (Tg) also increased by ~14°C while curing under microwave irradiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41708.  相似文献   

5.
Achieving synergetic improvements of mechanical strength, toughness, and thermal stability of epoxy resin has been a crucial but very challenging issue. Herein, to explore a new solution for circumventing this issue, polyimide microspheres were successfully prepared through the inverse nonaqueous emulsion process, and the structure, size distribution and morphologies of polyimide (PI) microspheres were comprehensively investigated. Then the PI microspheres were incorporated in epoxy resin matrix to systematically investigate the mechanical and thermal properties of obtained epoxy/PI microspheres composites. It was found that the PI microspheres can not only enhance the mechanical strength of epoxy resin, but also significantly improve the toughness. Specially, the epoxy-based composites containing 3 wt% PI microspheres exhibit a 47% increase in tensile strength, while the GIC and Charpy impact strength increase by 106% and 200%, respectively. The toughing mechanism of epoxy/PI microspheres composites was discussed. Moreover, the PI microspheres can also endow the epoxy resin with excellent thermal stability and heat resistance. Thus, this work may open a new opportunity to synergistically enhance the mechanical and thermal properties of epoxy-based composites and may also give some valuable inspiration for the rational design of other high-performance thermosetting composites.  相似文献   

6.
The thermal expansion properties of three commercial elastomers; Pebax®, Estane® and Hytrel® modified with 2.5–10 wt % boron nitride were investigated. The glass transition temperatures of the filled materials were relatively unaffected; however boron nitride did effectively reinforce all the three elastomers as seen by dynamic mechanical analysis and tensile tests. The coefficients of thermal expansion of the composite materials do not obey the rule of mixtures and show a large decrease without the loss of ductility typically associated with filled elastomers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5153–5161, 2006  相似文献   

7.
This study is focused on the investigation of the effect of thermal shock cycling on the mechanical properties of cellulose based reinforced polymer composites. Polymer composites reinforced with olive pits powder at different filler‐volume fractions were manufactured. An increase in the bending modulus on the order of 48% was achieved. On the other hand, results showed that the bending strength remained almost unaffected from the amount of filler introduced. Next, the effect of thermal shock cycling on the mechanical behaviour of the thus manufactured composites was investigated. Theoretical predictions for both the properties variation with number of thermal shock cycles applied as well as with filler‐volume fraction were derived using the residual properties model (RPM) and the modulus predictive model (MPM), respectively. Predicted values were compared with respective experimental results. In all cases, a fair agreement between experimental findings and theoretical predictions was found. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Three kinds of high‐molecular‐weight compatibilizers [copoly(1,4‐phenylene sulfide)‐poly(2,5‐phenylene sulfide amine)] (PPS‐NH2) containing different proportions of amino units in the side chain) were synthesized by the reaction of dihalogenated monomer and sodium sulfide via nucleophilic substitution polymerization under high pressure. The intrinsic viscosity of the obtained copolymers was 0.354–0.489 dL/g and they were found to have good thermal performance with melting point (Tm) of 271.3–281.0 °C and initial degradation temperature (Td) of 490.0–495.7 °C. There was an excellent physical compatibility between PPS‐NH2 and the pure industrial PPS. The results of dynamic mechanical analysis and macro‐ and micromechanical test showed that the selective compatibilizer PPS‐NH2 (1.0) (1.0% mol aminated ratio) can improve the mechanical and interfacial properties of polyphenylene sulfide/glass fiber (PPS/GF) composite. The macro‐optimal tensile strength, Young's modulus, bending strength, and notched impact strength of 5%PPS‐NH2 (1.0)/PPS/GF composite raised up to 141 MPa, 1.98 GPa, 203 MPa, and 6.15 kJ/m2, which increased 12.8%, 9.4%, 4.1%, and 13.8%, respectively, comparing with the pure PPS/GF composite (125 MPa, 1.81 GPa, 195 MPa, and 5.40 kJ/m2, respectively). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45804.  相似文献   

9.
Hollow microspheres (HM) of ceramic, silica, and glass‐filled silicone rubber (SR) composites were prepared, and the effects of hybrid HM on thermal and mechanical properties of composites were investigated. The results indicate that hybrid HM can effectively improve the thermal insulation property of HM/SR composites. Especially, for sample 15S, the thermal conductivity and thermal degradation temperature reached 0.1273 W/m K and 521 °C (45 °C higher than that of neat SR), respectively. Besides, thermal insulation performance was improved, showing as a temperature of 103.2 °C after 15 min heating, which is 37.8 °C lower than that of SR. The tensile strength of composites was enhanced from 1.92 MPa at 11.56 vol % hollow silica microspheres (HSM) loading to 3.08 MPa at 21.88 vol % HSM loading. Moreover, the compressive strength was improved from 3.33 to 5.68 MPa by introducing more hollow ceramic microspheres into the matrix, in this case, from 7.79 to 15.33 vol %. Furthermore, the failure mechanism was analyzed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46025.  相似文献   

10.
Numerous ways to reinforce epoxy resin and improve its thermomechanical properties have been attempted using organic and inorganic nanoparticles. In this paper, graphitic carbon nitride (g-C3N4) nanoparticles were synthesized and used to improve the mechanical properties and thermal stability of epoxy composites. The g-C3N4 was synthesized from cheap melamine powder using a simple one-step thermal treatment, then was used to reinforce the resin at different weight percentages (wt%). X-ray diffraction, scanning electron microscopy (SEM), and Fourier infrared spectroscopy were used to characterize the g-C3N4 and ensure its successful synthesis by studying the changes in its crystal structure, morphology, and chemical structure. The filler was dispersed in the resin using a combination of ultrasonication and high shear mixing. The results showed that the mechanical properties were optimum when 0.5 wt% g-C3N4 was used. The tensile strength and fracture toughness of the resulting epoxy composite improved by 21.8% and 77.3%, respectively. SEM was used to investigate the morphologies of cracks formed in epoxy composite specimens after the tensile testing. The SEM micrographs of the fracture surface showed a transition from a brittle to a rough morphology, signifying the enhancement in the composites' toughness. Thermogravimetric analysis showed a good improvement in degradation temperature of up to 8.86% while dynamic mechanical analysis showed that the incorporation of g-C3N4 did not affect the material's glass transition temperature.  相似文献   

11.
The effect of the molecular orientation direction of a polymer matrix on the in‐plane thermal conductivity (TC) of injection‐molded polymer/hexagonal boron nitride (h‐BN) composites is investigated. In this system, the h‐BN platelets align in the in‐plane direction owing to injection shear flow. Three molecular orientations (perpendicular, random, and parallel to the h‐BN plane) are achieved using liquid crystalline polyesters and the in‐plane TCs are compared. Although a parallel orientation of the polymer chains provides the highest TC of the matrix in the injection direction, the TC of the composites is the lowest of the three systems for this orientation. The highest in‐plane TC is found in the perpendicularly oriented system, irrespective of the in‐plane direction. These results reveal that perpendicularly oriented molecular chains serve as effective heat paths between h‐BN platelets that are arranged one above the other, and consequently, a continuous thermal network is created in the in‐plane direction. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39768.  相似文献   

12.
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504.  相似文献   

13.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios.  相似文献   

14.
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Poly(ether ester) (PEE) copolymers were synthesized in a two‐stage process involving transesterification and polycondensation. The synthesized copolymer and the zinc oxide (ZnO) were used in composite preparation by melt compounding. The influence of ZnO type and concentration on the morphology, thermal and mechanical properties of the composites were studied. DSC and XRD analyses indicated that crystallinity of composites was slightly reduced with ZnO content. Homogeneous dispersion of fillers in the polymer matrix was observed through morphological analyses. While in general tensile strength and elongation at break values of the composites decreased with increasing ZnO content, elastic modulus values increased with the addition of ZnO. Moreover, ZnO particles were modified with poly(N‐vinyl pyrrolidone) and a slight improvement in mechanical properties was observed, respectively over the composites containing unmodified particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Cyanate esters are a class of important thermally resistant polymers. To tailor their processability and thermomechanical properties, a series of cyanate ester blends based on a trifunctional novolac cyanate ester (HF‐5), a difunctional bisphenol E cyanate ester (HF‐9), and a reactive catalyst [2,2′‐diallyl bisphenol A (DBA)] were formulated. The effect of the blend composition on the rheology and curing behavior of these cyanate ester blends and the corresponding thermal and mechanical properties of the cured cyanate ester blends was studied. The results showed that HF‐5 contributed to good mechanical property retention at high temperatures because of its trifunctionality, whereas HF‐9 imparted processability by reducing the viscosity and extending the pot life of the formulated cyanate ester blends at the processing temperature. On the basis of the results, an optimal cyanate ester blend suitable for resin transfer molding was determined: the HF‐5/HF‐9/DBA weight ratio of 80 : 15 : 5 exhibited good processability and thermomechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4284–4290, 2006  相似文献   

17.
A novel composite material consisting of polypropylene (PP) fibers in a random poly(propylene‐co‐ethylene) (PPE) matrix was prepared and its properties were evaluated. The thermal and mechanical properties of PP–PPE composites were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) with reference to the fiber concentration. Although, by increasing PP fiber concentration in PPE, no significant difference was found in melting and crystallization temperatures of the PPE, the storage, and the tensile and flexural modulus of the composites increased linearly with fiber concentrations up to 50%, 1.5, 1.0, 1.3 GPa, respectively, which was approximately four times higher than that for the pure PPE. There is a shift in glass transition temperature of the composite with increasing fiber concentration in the composite and the damping peak became flatter, which indicates the effectiveness of fiber–matrix interaction. A higher concentration of long fibers (>50% w/w) resulted in fiber packing problems, difficulty in dispersion, and an increase in void content, which led to a reduction in modulus. Cox–Krenchel and Haplin–Tsai equations were used to predict tensile modulus of random fiber‐reinforced composites. A Cole–Cole analysis was performed to understand the phase behavior of the composites. A master curve was constructed based on time–temperature superposition (TTS) by using data over the temperature range from −50 to 90°C, which allowed for the prediction of very long and short time behavior of the composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2260–2272, 2005  相似文献   

18.
We synthesized an epoxy matrix composite adhesive containing aluminum nitride (AlN) powder, which was used for thermal interface materials (TIM) in high power devices. The experimental results revealed that adding AlN fillers into epoxy resin was an effective way to boost thermal conductivity and maintain electrical insulation. We also discovered a proper coupling agent that reduced the viscosity of the epoxy‐AlN composite by AlN surface treatment and increased the solid loading to 60 vol %. For the TIM sample made with the composite adhesive, we obtained a thermal conductivity of 2.70 W/(m K), which was approximately 13 times larger than that of pure epoxy. The dielectric strength of the TIM was 10 to 11 kV/mm, which was large enough for applications in high power devices. Additionally, the thermal and insulating properties of the TIM did not degrade after thermal shock testing, indicating its reliability for use in power devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Polypropylene‐based needle‐punched nonwoven reinforced epoxy composites have been fabricated and were evaluated for their thermomechanical response and dry erosion performance. The erosive wear investigations were carried out using silica sand particles as erodent with varying impact velocity, angles of impingement, fiber content, and stand‐off‐distance as the operating variables. Design of experiments (DoE) approach‐based Taguchi analysis was carried out to establish the interdependence of operating parameters and erosion rate. Impingement angle and impact velocity have been found to be the most significant determinants of erosive wear performance of such nonwoven reinforced composites. The composites were also observed to be appreciably resistant to impact content and indentations in addition to exhibiting the absence of any storage‐modulus decay till 60°C accompanied with a nominal increase in the primary transition temperature as revealed from loss‐tangent peaks. The composite with 30 wt % and 40 wt % of nonwoven materials have shown the highest and lowest erosion rates, respectively. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM) and their possible erosion mechanisms are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The influence of the carbon black content on the mechanical and electrical properties of polypropylene/carbon black composites prepared by different processing procedures was investigated. The formation of a continuous conducting network in the insulating matrix and, consequently, the percolation threshold depend strongly on the processing route and influence both the mechanical and electrical properties of the prepared composites. An interesting coincidence of the dependencies of conductivity and elongation at break on the filler content was found. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1903–1906, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号