首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究钙钛矿晶体缺陷对于推动钙钛矿太阳能电池的发展至关重要.缺陷不仅会引起大量非辐射复合,而且会造成器件稳定性下降.为降低材料缺陷对光伏性能的影响,有必要深入了解钙钛矿薄膜缺陷的种类及抑制方法.根据电子特性,缺陷可分为富电子缺陷和缺电子缺陷.利用Lewis酸碱理论,富电子缺陷可以被Lewis酸钝化,而缺电子缺陷可以被Le...  相似文献   

2.
Slot-die coating is generally regarded as the most effective large-scale methodology for the fabrication of organic solar cells (OSCs). However, the corresponding device performance significantly lags behind spin-coated devices. Herein, the active layer morphology, flexible substrate properties, and the processing temperature are optimized synergistically to obtain high power conversion efficiency (PCE) for both the flexible single cells and the modules. As a result, the 1 cm2 flexible devices produce an excellent PCE of 12.16% as compared to 12.37% for the spin-coated small-area (0.04 cm2) rigid devices. Likewise, for modules with an area of 25 cm2, an extraordinary PCE of 10.09% is observed. Hence, efficiency losses associated with the upscaling are significantly reduced by the synergistic optimization. Moreover, after 1000 bending cycles at a bending radius of 10 mm, the flexible devices still produce over 99% of their initial PCE, whereas after being stored for over 6000 h in a glove box, the PCE reaches 103% of its initial value, indicating excellent device flexibility as well as superior shelf stability. These results, thus, are a promising confirmation the great potential for upscaling of large-area OSCs in the near future.  相似文献   

3.
Passivation of interfacial defects serves as an effective means to realize highly efficient and stable perovskite solar cells (PSCs). However, most molecular modulators currently used to mitigate such defects form poorly conductive aggregates at the perovskite interface with the charge collection layer, impeding the extraction of photogenerated charge carriers. Here, a judiciously engineered passivator, 4-tert-butyl-benzylammonium iodide (tBBAI), is introduced, whose bulky tert-butyl groups prevent the unwanted aggregation by steric repulsion. It is found that simple surface treatment with tBBAI significantly accelerates the charge extraction from the perovskite into the spiro-OMeTAD hole-transporter, while retarding the nonradiative charge carrier recombination. This boosts the power conversion efficiency (PCE) of the PSC from ≈20% to 23.5% reducing the hysteresis to barely detectable levels. Importantly, the tBBAI treatment raises the fill factor from 0.75 to the very high value of 0.82, which concurs with a decrease in the ideality factor from 1.72 to 1.34, confirming the suppression of radiation-less carrier recombination. The tert-butyl group also provides a hydrophobic umbrella protecting the perovskite film from attack by ambient moisture. As a result, the PSCs show excellent operational stability retaining over 95% of their initial PCE after 500 h full-sun illumination under maximum-power-point tracking under continuous simulated solar irradiation.  相似文献   

4.
Defects, inevitably produced within bulk and at perovskite-transport layer interfaces (PTLIs), are detrimental to power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). It is demonstrated that a crosslinkable organic small molecule thioctic acid (TA), which can simultaneously be chemically anchored to the surface of TiO2 and methylammonium lead iodide (MAPbI3) through coordination effects and then in situ crosslinked to form a robust continuous polymer (Poly(TA)) network after thermal treatment, can be introduced into PSCs as a new bifacial passivation agent for greatly passivating the defects. It is also discovered that Poly(TA) can additionally enhance the charge extraction efficiency and the water-resisting and light-resisting abilities of perovskite film. These newly discovered features of Poly(TA) make PSCs herein achieve among the best PCE of 20.4% ever reported for MAPbI3 with negligible hysteresis, along with much enhanced ultraviolet, air, and operational stabilities. Density functional theory calculations reveal that the passivation of MAPbI3 bulk and PTLIs by Poly(TA) occurs through the interaction of functional groups ( COOH,  C S) in Poly(TA) with under-coordinated Pb2+ in MAPbI3 and Ti4+ in TiO2, which is supported by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.  相似文献   

5.
Organic–inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite absorber and the charge–transport layers. Here, in situ back‐contact passivation (BCP) that reduces interfacial and extraction losses between the perovskite absorber and the hole transport layer (HTL) is reported. A thin layer of nondoped semiconducting polymer at the perovskite/HTL interface is introduced and it is shown that the use of the semiconductor polymer permits—in contrast with previously studied insulator‐based passivants—the use of a relatively thick passivating layer. It is shown that a flat‐band alignment between the perovskite and polymer passivation layers achieves a high photovoltage and fill factor: the resultant BCP enables a photovoltage of 1.15 V and a fill factor of 83% in 1.53 eV bandgap PSCs, leading to an efficiency of 21.6% in planar solar cells.  相似文献   

6.
The interface between the perovskite and electron-transporting material is often treated for defect passivation to improve the photovoltaic performance of devices. A facile 4-Acetamidobenzoic acid (containing an acetamido, a carboxyl, and a benzene ring)-based molecular synergistic passivation (MSP) strategy is developed here to engineer the SnOx/perovskite interface, in which dense SnOx are prepared using an E-beam evaporation technology while the perovskite is deposited with vacuum flash evaporation deposition method. MSP engineering can synergistically passivate defects at the SnOx/perovskite interface by coordinating with Sn4+ and Pb2+ with functional group  CO in the acetamido and carboxyl. The optimized solar cell devices can achieve the highest efficiency of 22.51% based on E-Beam deposited SnOx and 23.29% based on solution-processed SnO2, respectively, accompanied by excellent stability exceeding 3000 h. Further, the self-powered photodetectors exhibit a remarkably low dark current of 5.22 × 10−9 A cm−2, a response of 0.53 A W−1 at zero bias, a detection limit of 1.3 × 1013 Jones, and a linear dynamic range up to 80.4 dB. This work proposes a molecular synergistic passivation strategy to enhance the efficiency and responsivity of solar cells and self-powered photodetectors.  相似文献   

7.
Inorganic CsPbI3 perovskite quantum dot (PQD) receives increasing attention for the application in the new generation solar cells, but the defects on the surface of PQDs significantly affect the photovoltaic performance and stability of solar cells. Herein, the amino acids are used as dual‐passivation ligands to passivate the surface defects of CsPbI3 PQDs using a facile single‐step ligand exchange strategy. The PQD surface properties are investigated in depth by combining experimental studies and theoretical calculation approaches. The PQD solid films with amino acids as dual‐passivation ligands on the PQD surface are thoroughly characterized using extensive techniques, which reveal that the glycine ligand can significantly improve defect passivation of PQDs and therefore diminish charge carrier recombination in the PQD solid. The power conversion efficiency (PCE) of the glycine‐based PQD solar cell (PQDSC) is improved by 16.9% compared with that of the traditional PQDSC fabricated with Pb(NO3)2 treating the PQD surface, owning to improved charge carrier extraction. Theoretical calculations are carried out to comprehensively understand the thermodynamic feasibility and favorable charge density distribution on the PQD surface with a dual‐passivation ligand.  相似文献   

8.
Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3 perovskite layer, using two phthalocyanine (Pc) molecules (NP-SC6-ZnPc and NP-SC6-TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under-coordinated Pb2+ sites, leading to efficient defect passivation of the perovskite layer. The tendency of both NP-SC6-ZnPc and NP-SC6-TiOPc to relax on the PbI2 terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high-quality thin films with a dense and compact structure and lower surface roughness. Using NP-SC6-ZnPc and NP-SC6-TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% for NP-SC6-TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.  相似文献   

9.
10.
Lead halide-based perovskites solar cells (PSCs) are intriguing candidates for photovoltaic technology due to their high efficiency, low cost, and simple fabrication processes. Currently, PSCs with efficiencies of >25% are mainly based on methylammonium (MA)-free and bromide (Br) free, formamide lead iodide (FAPbI3)-based perovskites, because MA is thermally unstable due to its volatile nature and Br incorporation will induce blue shift in the absorption spectrum. Therefore, MA-free, Br-free formamidine-based perovskites are drawing huge research attention in recent years. The hole transporting layer (HTL) is crucial in fabricating highly efficient and stable inverted p-i-n structured PSCs by enhancing charge extraction, lowering interfacial recombination, and altering band alignment, etc. Here, this work employs a NiOx/PTAA bi-layer HTL combined with GuHCl (guanidinium hydrochloride) additive engineering and PEAI (phenylethylammonium iodide) passivation strategy to optimize the charge carrier dynamics and tune defects chemistry in the MA-free, Br-free RbCsFAPbI3-based perovskite absorber, which boosts the device efficiency up to 22.78%. Additionally, the device retains 95% of its initial performance under continuous 1 sun equivalent LED light illumination at 45 °C for up to 500 h.  相似文献   

11.
The development of tin (Sn)-based perovskite solar cells (PSCs) is hindered by their lower power conversion efficiency and poorer stability compared to the lead-based ones, which arise from the easy oxidation of Sn2+ to Sn4+. Herein, phenylhydrazine hydrochloride (PHCl) is introduced into FASnI3 (FA = NH2CH  NH2+) perovskite films to reduce the existing Sn4+ and prevent the further degradation of FASnI3, since PHCl has a reductive hydrazino group and a hydrophobic phenyl group. Consequently, the device achieves a record power conversion efficiency of 11.4% for lead-free PSCs. Besides, the unencapsulated device displays almost no efficiency reduction in a glove box over 110 days and shows efficiency recovery after being exposed to air, due to a proposed self-repairing trap state passivation process.  相似文献   

12.
Metal‐halide perovskites are rapidly emerging as an important class of photovoltaic absorbers that may enable high‐performance solar cells at affordable cost. Thanks to the appealing optoelectronic properties of these materials, tremendous progress has been reported in the last few years in terms of power conversion efficiencies (PCE) of perovskite solar cells (PSCs), now with record values in excess of 24%. Nevertheless, the crystalline lattice of perovskites often includes defects, such as interstitials, vacancies, and impurities; at the grain boundaries and surfaces, dangling bonds can also be present, which all contribute to nonradiative recombination of photo‐carriers. On device level, such recombination undesirably inflates the open‐circuit voltage deficit, acting thus as a significant roadblock toward the theoretical efficiency limit of 30%. Herein, the focus is on the origin of the various voltage‐limiting mechanisms in PSCs, and possible mitigation strategies are discussed. Contact passivation schemes and the effect of such methods on the reduction of hysteresis are described. Furthermore, several strategies that demonstrate how passivating contacts can increase the stability of PSCs are elucidated. Finally, the remaining key challenges in contact design are prioritized and an outlook on how passivating contacts will contribute to further the progress toward market readiness of high‐efficiency PSCs is presented.  相似文献   

13.
Despite the optoelectronic similarities between tin and lead halide perovskites, the performance of tin-based perovskite solar cells remains far behind, with the highest reported efficiency to date being ≈14%. This is highly correlated to the instability of tin halide perovskite, as well as the rapid crystallization behavior in perovskite film formation. In this work, l -Asparagine as a zwitterion plays a dual role in controlling the nucleation/crystallization process and improving the morphology of perovskite film. Furthermore, tin perovskites with l -Asparagine show more favorable energy-level matching, enhancing the charge extraction and minimizing the charge recombination, leading to an enhanced power conversion efficiency of 13.31% (from 10.54% without l -Asparagine) with remarkable stability. These results are also in good agreement with the density functional theory calculations. This work not only provides a facile and efficient approach to controlling the crystallization and morphology of perovskite film but also offers guidelines for further improved performance of tin-based perovskite electronic devices.  相似文献   

14.
The status and problems of upscaling research on perovskite solar cells, which must be addressed for commercialization efforts to be successful, are investigated. An 804 cm2 perovskite solar module has been reported with 17.9% efficiency, which is significantly lower than the champion perovskite solar cell efficiency of 25.2% reported for a 0.09 cm2 aperture area. For the realization of upscaling high-quality perovskite solar cells, the upscaling and development history of conventional silicon, copper indium gallium sulfur/selenide and CdTe solar cells, which are already commercialized with modules of sizes up to ≈25 000 cm2, are reviewed. GaAs, organic, dye-sensitized solar cells and perovskite/silicon tandem solar cells are also reviewed. The similarities of the operating mechanisms between the various solar cells and the origin of different development pathway are investigated, and the ideal upscaling direction of perovskite solar cells is subsequently proposed. It is believed that lessons learned from the historical analysis of various solar cells provide a fundamental diagnosis of relative and absolute development status of perovskite solar cells. The unique perspective proposed here can pave the way toward the upscaling of perovskite solar cells.  相似文献   

15.
Poor carrier transport capacity and numerous surface defects of charge transporting layers (CTLs), coupled with misalignment of energy levels between perovskites and CTLs, impact photoelectric conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) profoundly. Herein, a collaborative passivation strategy is proposed based on 4-(chloromethyl) benzonitrile (CBN) as a solution additive for fabrication of both [6,6]-phenyl-C61-butyric acid methylester (PCBM) and poly(triarylamine) (PTAA) CTLs. This additive can improve wettability of PTAA and reduce the agglomeration of PCBM particles, which enhance the PCE and device stability of the PSCs. As a result, a PCE exceeding 20% with a remarkable short circuit current of 23.9 mA cm−2, and an improved fill factor of 81% is obtained for the CBN- modified inverted PSCs. Devices maintain 80% and 70% of the initial PCE after storage under 30% and 85% humidity ambient conditions for 1000 h without encapsulation, as well as negligible light state PCE loss. This strategy demonstrates feasibility of the additive engineering to improve interfacial contact between the CTLs and perovskites for fabrication of efficient and stable inverted PSCs.  相似文献   

16.
Even though the power conversion efficiency (PCE) of rigid perovskite solar cells is increased to 22.7%, the PCE of flexible perovskite solar cells (F‐PSCs) is still lower. Here, a novel dimethyl sulfide (DS) additive is developed to effectively improve the performance of the F‐PSCs. Fourier transform infrared spectroscopy reveals that the DS additive reacts with Pb2+ to form a chelated intermediate, which significantly slows down the crystallization rate, leading to large grain size and good crystallinity for the resultant perovskite film. In fact, the trap density of the perovskite film prepared using the DS additive is reduced by an order of magnitude compared to the one without it, demonstrating that the additive effectively retards transformation kinetics during the thin film formation process. As a result, the PCE of the flexible devices increases to 18.40%, with good mechanical tolerance, the highest reported so far for the F‐PSCs. Meanwhile, the environmental stability of the F‐PSCs significantly enhances by 1.72 times compared to the device without the additive, likely due to the large grain size that suppresses perovskite degradation at grain boundaries. The present strategy will help guide development of high efficiency F‐PSCs for practical applications.  相似文献   

17.
18.
三维(3D)有机–无机金属卤化物钙钛矿薄膜的表面和晶界处存在大量缺陷,容易导致载流子的非辐射复合并加快3D钙钛矿分解,进而影响钙钛矿太阳能电池(PSCs)能量转换效率(PCE)及稳定性.本研究通过引入对氯苄胺阳离子,与3D钙钛矿薄膜及其表面过剩的碘化铅反应后原位形成了二维(2D)钙钛矿,实现了对3D钙钛矿薄膜表面和晶界...  相似文献   

19.
Realization of reduced ionic (cationic and anionic) defects at the surface and grain boundaries (GBs) of perovskite films is vital to boost the power conversion efficiency of organic–inorganic halide perovskite (OIHP) solar cells. Although numerous strategies have been developed, effective passivation still remains a great challenge due to the complexity and diversity of these defects. Herein, a solid-state interdiffusion process using multi-cation hybrid halide perovskite quantum dots (QDs) is introduced as a strategy to heal the ionic defects at the surface and GBs. It is found that the solid-state interdiffusion process leads to a reduction in OIHP shallow defects. In addition, Cs+ distribution in QDs greatly influences the effectiveness of ionic defect passivation with significant enhancement to all photovoltaic performance characteristics observed on treating the solar cells with Cs0.05(MA0.17FA0.83)0.95PbBr3 (abbreviated as QDs-Cs5). This enables power conversion efficiency (PCE) exceeding 21% to be achieved with more than 90% of its initial PCE retained on exposure to continuous illumination of more than 550 h.  相似文献   

20.
Exploiting organic/inorganic hybrid perovskite solar cells (PSCs) with reduced Pb content is very important for developing environment‐friendly photovoltaics. Utilizing of Pb–Sn alloying perovskite is considered as an efficient route to reduce the risk of ecosystem pollution. However, the trade‐off between device performance and Sn substitution ratio due to the instability of Sn2+ is a current dilemma. Here, for the first time, the highly efficient Pb–Sn–Cu ternary PSCs are reported by partial replacing of PbI2 with SnI2 and CuBr2. Sn2+ substitution results in a redshift of the absorption onset, whereas worsens the film quality. Interestingly, Cu2+ introduction can passivate the trap sites at the crystal boundaries of Pb–Sn perovskites effectively. Consequently, a power conversion efficiency as high as 21.08% in inverted planar Pb–Sn–Cu ternary PSCs is approached. The finding opens a new route toward the fabrication of high efficiency Pb–Sn alloying perovskite solar cells by Cu2+ passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号