首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical metamaterials offer the tantalizing possibility of creating extraordinary optical properties through the careful design and arrangement of subwavelength structural units. Gyroid‐structured optical metamaterials possess a chiral, cubic, and triply periodic bulk morphology that exhibits a redshifted effective plasma frequency. They also exhibit a strong linear dichroism, the origin of which is not yet understood. Here, the interaction of light with gold gyroid optical metamaterials is studied and a strong correlation between the surface morphology and its linear dichroism is found. The termination of the gyroid surface breaks the cubic symmetry of the bulk lattice and gives rise to the observed wavelength‐ and polarization‐dependent reflection. The results show that light couples into both localized and propagating plasmon modes associated with anisotropic surface protrusions and the gaps between such protrusions. The localized surface modes give rise to the anisotropic optical response, creating the linear dichroism. Simulated reflection spectra are highly sensitive to minute details of these surface terminations, down to the nanometer level, and can be understood with analogy to the optical properties of a 2D anisotropic metasurface atop a 3D isotropic metamaterial. This pronounced sensitivity to the subwavelength surface morphology has significant consequences for both the design and application of optical metamaterials.  相似文献   

2.
Adhesion occurs by covalent bonding, as in reactive structural adhesives, or through noncovalent interactions, which are nearly ubiquitous in nature. A classic example of the latter is gecko feet, where hierarchical features enhance friction across the contact area. Biomimicry of such structured adhesion is regularly achieved by top-down lithography, which allows for direction-dependent detachment. However, bottom-up approaches remain elusive given the scarcity of building blocks that yield strong, cohesive, self-assembly across multiple length scales. Herein, an exception is introduced, namely, aqueous dispersions of cellulose nanocrystals (CNCs) that form superstructured, adherent layers between solid surfaces upon confined evaporation-induced self-assembly (C-EISA). The inherently strong CNCs (EA > 140 GPa) align into rigid, nematically ordered lamellae across multiple length scales as a result of the stresses associated with confined evaporation. This long-range order produces remarkable anisotropic adhesive strength when comparing in-plane (≈7 MPa) and out-of-plane (≤0.08 MPa) directions. These adhesive attributes, resulting from self-assembly, substantially outperform previous biomimetic adhesives obtained by top-down microfabrication (dry adhesives, friction driven), and represent a unique fluid (aqueous)-based system with significant anisotropy of adhesion. By using C-EISA, new emergent properties will be closely tied with the nature of colloids and their hierarchical assemblies.  相似文献   

3.
4.
Metamaterials provide a powerful platform to probe and enhance nonlinear responses in physical systems toward myriad applications. Herein, the development of a coupled nonlinear metamaterial (NLMM) featuring a self‐adaptive response that selectively amplifies the magnetic field is reported. The resonance of the NLMM is suppressed in response to higher degrees of radio‐frequency excitation strength and recovers during a subsequent low excitation strength phase, thereby exhibiting an intelligent, or nonlinear, behavior by passively sensing excitation signal strength and responding accordingly. The nonlinear response of the NLMM enables us to boost the signal‐to‐noise ratio during magnetic resonance imaging to an unprecedented degree. These results provide insights into a new paradigm to construct NLMMs consisting of coupled resonators and pave the way toward the utilization of NLMMs to address a host of practical technological applications.  相似文献   

5.
6.
7.
Metamaterials, artificially constructed structures that mimic lattices in natural materials, have made numerous contributions to the development of unconventional optical devices. With an increasing demand for more diverse functionalities, terahertz (THz) metamaterials are also expanding their domain, from the realm of mere passive devices to the broader area where functionalized active THz devices are particularly required. A brief review on THz metamaterials is given with a focus on research conducted in the authors' group. The first part is centered on enhanced THz optical responses from tightly coupled meta-atom structures, such as high refractive index, enhanced optical activity, anomalous wavelength scaling, large phase retardation, and nondispersive polarization rotation. Next, electrically gated graphene metamaterials are reviewed with an emphasis on the functionalization of enhanced THz optical responses. Finally, the linear frequency conversion of THz waves in a rapidly time-variant THz metamaterial is briefly discussed in the more general context of spatiotemporal control of light.  相似文献   

8.
9.
Origami is the art of folding two‐dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three‐dimensional (3D) objects. This study reports origami‐based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura‐ori split‐ring resonators. The deformation of the Miura‐ori unit along the third dimension induces net electric and magnetic dipoles of split‐ring resonators parallel or anti‐parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties.  相似文献   

10.
Origami structures are a traditional Japanese art that have recently found their way into engineering applications due to their powerful capability to transform flat 2D structures into complex 3D structures along their creases. This has given a rise to their application as designer materials with unprecedented mechanical characteristics, also known as metamaterials. Herein, gradient Miura-ori origami metamaterials are introduced as a method to preprogram out-of-plane curvatures. Several types of unit cell distributions in the origami lattice structure including checkered, linear gradient, concave radial gradient, convex radial gradient, and striped are considered. The results show that these distributions of Miura-ori origami can create single- or double curvatures including twisting, saddling, bending, local inflation, local twisting, local bending, and wavy shapes, when the origami metamaterial is loaded in compression. All the Gaussian curvatures (negative, positive, and zero) can be achieved using the proposed models. The approach helps tailoring complex preprogrammed surface geometries by employing linearly varying gradient distributions of Miura-ori origami.  相似文献   

11.
12.
13.
Materials with engineered thermal expansion, capable of achieving targeted area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with engineered coefficient of thermal expansion consist of bi‐material 2D or 3D lattices, here it is shown that origami metamaterials also provide a platform for the design of systems with a wide range of thermal expansion coefficients. Experiments and simulations are combined to demonstrate that by tuning the geometrical parameters of the origami structure and the arrangement of plates and creases, an extremely broad range of thermal expansion coefficients can be obtained. Differently from all previously reported systems, the proposed structure is tunable in situ and nonporous.  相似文献   

14.
15.
The fields of biosensing and nanomedicine have recently witnessed an explosion of interest and progress in the design and study of plasmonic Au nanostructures (p‐AuNSs) or metamaterials geared towards a broad range of biological and biomedical applications. Due to their tunable and versatile plasmonic properties, such artificially engineered p‐AuNSs and materials have the potential to push biosensor sensitivity towards the single‐molecule detection limit, enabling new bioimaging modalities and new analytical techniques and tools capable of single‐molecule detection, analysis and manipulation, and to revolutionize the diagnosis and treatment of many diseases, including cancers. This report summarizes and highlights recent major advances in the emerging field of bioapplication‐oriented engineering of p‐AuNSs and hybrids, focusing on design considerations and ways to carry them out. A brief overview of the optical properties of p‐AuNSs is introduced, and then the importance of plasmonic engineering and future promising research directions and challenges in the field are discussed.  相似文献   

16.
17.
18.
Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2 and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号