首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Low energy loss and efficient charge separation under small driving forces are the prerequisites for realizing high power conversion efficiency (PCE) in organic photovoltaics (OPVs). Here, a new molecular design of nonfullerene acceptors (NFAs) is proposed to address above two issues simultaneously by introducing asymmetric terminals. Two NFAs, BTP-S1 and BTP-S2, are constructed by introducing halogenated indandione (A1) and 3-dicyanomethylene-1-indanone (A2) as two different conjugated terminals on the central fused core (D), wherein they share the same backbone as well-known NFA Y6, but at different terminals. Such asymmetric NFAs with A1-D-A2 structure exhibit superior photovoltaic properties when blended with polymer donor PM6. Energy loss analysis reveals that asymmetric molecule BTP-S2 with six chlorine atoms attached at the terminals enables the corresponding devices to give an outstanding electroluminescence quantum efficiency of 2.3 × 10−2%, one order of magnitude higher than devices based on symmetric Y6 (4.4 × 10−3%), thus significantly lowering the nonradiative loss and energy loss of the corresponding devices. Besides, asymmetric BTP-S1 and BTP-S2 with multiple halogen atoms at the terminals exhibit fast hole transfer to the donor PM6. As a result, OPVs based on the PM6:BTP-S2 blend realize a PCE of 16.37%, higher than that (15.79%) of PM6:Y6-based OPVs. A further optimization of the ternary blend (PM6:Y6:BTP-S2) results in a best PCE of 17.43%, which is among the highest efficiencies for single-junction OPVs. This work provides an effective approach to simultaneously lower the energy loss and promote the charge separation of OPVs by molecular design strategy.  相似文献   

2.
Ternary heterojunction strategies appear to be an efficient approach to improve the efficiency of organic solar cells (OSCs) through harvesting more sunlight. Ternary OSCs are fabricated by employing wide bandgap polymer donor (PM6), narrow bandgap nonfullerene acceptor (Y6), and PC71BM as the third component to tune the light absorption and morphologies of the blend films. A record power conversion efficiency (PCE) of 16.67% (certified as 16.0%) on rigid substrate is achieved in an optimized PM6:Y6:PC71BM blend ratio of 1:1:0.2. The introduction of PC71BM endows the blend with enhanced absorption in the range of 300–500 nm and optimises interpenetrating morphologies to promote photogenerated charge dissociation and extraction. More importantly, a PCE of 14.06% for flexible ITO‐free ternary OSCs is obtained based on this ternary heterojunction system, which is the highest PCE reported for flexible state‐of‐the‐art OSCs. A very promising ternary heterojunction strategy to develop highly efficient rigid and flexible OSCs is presented.  相似文献   

3.
A ternary structure has been demonstrated as being an effective strategy to realize high power conversion efficiency (PCE) in organic solar cells (OSCs); however, general materials selection rules still remain incompletely understood. In this work, two nonfullerene small‐molecule acceptors 3TP3T‐4F and 3TP3T‐IC are synthesized and incorporated as a third component in PM6:Y6 binary blends. The photovoltaic behaviors in the resultant ternary OSCs differ significantly, despite the comparable energy levels. It is found that incorporation of 15% 3TP3T‐4F into the PM6:Y6 blend results in facilitating exciton dissociation, increasing charge transport, and reducing trap‐assisted recombination. All these features are responsible for the enlarged PCE of 16.7% (certified as 16.2%) in the PM6:Y6:3TP3T‐4F ternary OSCs, higher than that (15.6%) in the 3TP3T‐IC containing ternary devices. The performance differences are mainly ascribed to the compatibility between the third component and the host materials. The 3TP3T‐4F guest acceptor exhibits an excellent compatibility with Y6, tending to form well‐mixed phases in the ternary blend without disrupting the favored bicontinuous transport networks, whereas 3TP3T‐IC displays a morphological incompatibility with Y6. This work highlights the importance of considering the compatibility for materials selection toward high‐efficiency ternary organic OSCs.  相似文献   

4.
Ternary architecture has been widely demonstrated as a facile and efficient strategy to boost the performance of organic solar cells (OSCs). However, the rational design of the third component with suitable core and end-group modification is still a challenge. Herein, two new small-molecule (SM) donors BT-CN and BT-ER, featuring the identical conjugated backbone with distinct end group, have been designed, synthesized, and introduced into the PM6:Y6 binary system as the second donor. Both molecules exhibit complementary absorption and good miscibility with PM6, contributing to the nanofibrous phases and strong face-on molecular packing. Importantly, the incorporation of BT-CN/BT-ER has significantly facilitated charge collection and transportation with remarkable suppression of carrier recombination. As a result, ternary OSCs with 20 wt% BT-CN/BT-ER achieved a PCE of 16.8%/17.22% with synchronously increased open-circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF). Moreover, replacing Y6 with L8-BO further improves the PCE to 18.05%/18.11%, indicating the universality of both molecules as the third component. This work demonstrates not only two efficient SM donors with 4,8-bis(4-chloro-5-(tripropylsilyl)thiophen-2-yl) benzo[1,2-b:4,5-b′]dithiophene (BDTT-SiCl) as the core but also end group modification strategy to fine-tune the absorption spectrum, molecular packing, and energy levels of SM donors to construct high-performance ternary OSCs.  相似文献   

5.
Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π–π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.  相似文献   

6.
A family of the SM‐axis series based on benzo[1,?2‐?b:4,?5‐?b′]?dithiophene and 3‐ethylrhodanine (RD) units with structurally different π‐conjugation systems are synthesized as a means to understand the structure–property relationship of conjugated pathways in ternary non‐fullerene organic solar cells (NF‐OSCs) as a third component. The optical and electrochemical properties of the SM‐axis are highly sensitive both to the functionalized direction and to the number of RD groups. Enhanced power conversion efficiencies (PCEs) of over 11% in ternary devices are obtained by incorporating optimal SM‐X and SM‐Y contents from PBDB‐T:ITIC binary NF‐OSCs, while a slightly lower PCE is observed with the addition of SM‐XY. The results of in‐depth studies using various characterization techniques demonstrate that working mechanisms of SM‐axis‐based ternary NF‐OSCs are distinctly different from one another: an energy‐transfer mechanism with an alloy‐like model for SM‐X, a charge transfer with the same model for SM‐Y, and an energy transfer without such a structure for SM‐XY. As extension of the scope, a SM‐X‐based ternary NF‐OSC in the PM6:IT4F system also shows a greatly enhanced PCE of over 13%. The findings provide insights into the effects of conjugated pathways of organic semiconductors on mechanisms of ternary NF‐OSCs, advancing the understanding for synthetic chemists, materials engineers, and device physicists.  相似文献   

7.
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.  相似文献   

8.
Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.  相似文献   

9.
Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small‐molecule acceptor (SMA) design. Herein, two novel acceptor–(donor‐acceptor1‐donor)–acceptor (A‐DA1D‐A)‐type asymmetric SMAs are developed, namely C‐shaped BDTP‐4F and S‐shaped BTDTP‐4F . The BDTP‐4F ‐based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP‐4F ‐based device (13.12%). The better PCE for BDTP‐4F ‐based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A‐D‐A‐type SMAs ( IDTP‐4F and IDTTP‐4F ) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP‐4F with S‐shape conformation outperforms than IDTTP‐4F with C‐shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP‐4F and PM6:IDTP‐4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face‐on orientation and enhance donor‐acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.  相似文献   

10.
Organic photovoltaics (OPVs) are fabricated with PM6 as donor and T6Me, IT‐2F, or their mixture as acceptor. A 13.36% power conversion efficiency (PCE) is achieved from the optimized ternary OPVs with 50 wt% IT‐2F in acceptors, which is attributed to the enhanced photon harvesting of ternary active layers and improved exciton utilization efficiency through energy transfer from IT‐2F to T6Me. The efficient energy transfer from IT‐2F to T6Me can be confirmed from the photoluminescence spectra of neat and blend films, which may provide additional channels to enhance exciton utilization efficiency for achieving short‐circuit current density (JSC) improvement of ternary OPVs. It should be highlighted that the fill factor (FF) of ternary OPVs can be monotonously increased along with the incorporation of IT‐2F, indicating the gradually optimized phase separation degree of ternary active layers. The third component IT‐2F plays a key role in optimizing phase separation as a morphology regulator. Over 8% PCE improvement is achieved in the optimized ternary OPVs compared with the over 12% PCEs of the corresponding binary OPVs, respectively. This work indicates that the performance of ternary OPVs can be well optimized by carefully picking materials with good compatibility and complementary absorption spectra, as well as the appropriate energy levels.  相似文献   

11.
Efficient organic solar cells (OSCs) are fabricated using polymer PM6 as donor, and IPTBO‐4Cl and MF1 as acceptors. The power conversion efficiency (PCE) of IPTBO‐4Cl based and MF1 based binary OSCs individually arrive to 14.94% and 12.07%, exhibiting markedly different short circuit current density (JSC) of 23.18 mA cm?2 versus 17.01 mA cm?2, fill factor (FF) of 72.17% versus 78.18% and similar open circuit voltage (VOC) of 0.893 V versus 0.908 V. The two acceptors, IPTBO‐4Cl and MF1, have similar lowest unoccupied molecular orbital levels, which is beneficial for efficient electron transport in the ternary active layer. The PCE of optimized ternary OSCs arrives to 15.74% by incorporating 30 wt% MF1 in acceptors, resulting from the simultaneously increased JSC of 23.20 mA cm?2, VOC of 0.897 V, and FF of 75.64% in comparison with IPTBO‐4Cl based binary OSCs. The gradually increased FFs of ternary OSCs indicate the well‐optimized phase separation and molecular arrangement with MF1 as morphology regulator. This work may provide a new viewpoint for selecting an appropriate third component to achieve efficient ternary OSCs from materials and photovoltaic parameters of two binary OSCs.  相似文献   

12.
In this work, a nonfullerene polymer solar cell (PSC) based on a wide bandgap polymer donor PM6 containing fluorinated thienyl benzodithiophene (BDT‐2F) unit and a narrow bandgap small molecule acceptor 2,2′‐((2Z,2′Z)‐((4,4,9,9‐tetrahexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (IDIC) is developed. In addition to matched energy levels and complementary absorption spectrum with IDIC, PM6 possesses high crystallinity and strong π–π stacking alignment, which are favorable to charge carrier transport and hence suppress recombination in devices. As a result, the PM6:IDIC‐based PSCs without extra treatments show an outstanding power conversion efficiency (PCE) of 11.9%, which is the record value for the as‐cast PSC devices reported in the literature to date. Moreover, the device performances are insensitive to the active layer thickness (≈95–255 nm) and device area (0.20–0.81 cm2) with PCEs of over 11%. Besides, the PM6:IDIC‐based flexible PSCs with a large device area of 1.25 cm2 exhibit a high PCE of 6.54%. These results indicate that the PM6:IDIC blend is a promising candidate for future roll‐to‐roll mass manufacturing and practical application of highly efficient PSCs.  相似文献   

13.
Four low‐cost copolymer donors of poly(thiophene‐quinoxaline) (PTQ) derivatives are demonstrated with different fluorine substitution forms to investigate the effect of fluorination forms on charge separation and voltage loss (Vloss) of the polymer solar cells (PSCs) with the PTQ derivatives as donor and a A–DA'D–A‐structured molecule Y6 as acceptor. The four PTQ derivatives are PTQ7 without fluorination, PTQ8 with bifluorine substituents on its thiophene D‐unit, PTQ9, and PTQ10 with monofluorine and bifluorine substituents on their quinoxaline A‐unit respectively. The PTQ8‐ based PSC demonstrates a low power conversion efficiency (PCE) of 0.90% due to the mismatch in the highest occupied molecular orbital (HOMO) energy levels alignment between the donor and acceptor. In contrast, the devices based on PTQ9 and PTQ10 show enhanced charge‐separation behavior and gradually reduced Vloss, due to the gradually reduced nonradiative recombination loss in comparison with the PTQ7‐based device. As a result, the PTQ10‐based PSC demonstrates an impressive PCE of 16.21% with high open‐circuit voltage and large short‐circuit current density simultaneously, and its Vloss is reduced to 0.549 V. The results indicate that rational fluorination of the polymer donors is a feasible method to achieve fast charge separation and low Vloss simultaneously in the PSCs.  相似文献   

14.
在本工作中,我们制备了一种多孔的有机/无机复合电子传输层(P-ZnO),并将其成功用于反向有机太阳能电池中.P-ZnO不仅拥有适宜的功函,且可形成较大欧姆接触面积的独特表面,有利于器件中的电荷提取.与ZnO基器件相比,P-ZnO基器件的活性层具有增强的光陷阱效应.在PBDB-T/DTPPSe-2F,PM6/Y6和PTB...  相似文献   

15.
The development of eco-friendly solvent-processed organic solar cells (OSCs) suitable for industrial-scale production should be now considered the imperative research. Herein, asymmetric 3-fluoropyridine (FPy) unit is used to control the aggregation and fibril network of polymer blends. Notably, terpolymer PM6(FPy = 0.2) incorporating 20% FPy in a well-known donor polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)] (PM6) can reduce the regioregularity of the polymer backbone and endow them with much-enhanced solubility in eco-friendly solvents. Accordingly, the excellent adaptability for fabricating versatile devices based on PM6(FPy = 0.2) by toluene processing is demonstrated. The resulting OSCs exhibit a high power conversion efficiency (PCE) of 16.1% (17.0% by processed with chloroform) and low batch-to-batch variation. Moreover, by controlling the donor-to-acceptor weight ratio at 0.5:1.0 and 0.25:1.0, semi-transparent OSCs (ST-OSCs) yield significant light utilization efficiencies of 3.61% and 3.67%, respectively. For large-area (1.0 cm2) indoor OSC (I-OSC), a high PCE of 20.6% is achieved with an appropriate energy loss of 0.61 eV under a warm white light-emitting diode (3,000 K) with the illumination of 958 lux. Finally, the long-term stability of the devices is evaluated by investigating their structure–performance–stability relationship. This work provides an effective approach to realizing eco-friendly, efficient, and stable OSCs/ST-OSCs/I-OSCs.  相似文献   

16.
It is of great significance to develop efficient donor polymers during the rapid development of acceptor materials for nonfullerene bulk-heterojunction (BHJ) polymer solar cells. Herein, a new donor polymer, named PBTT-F, based on a strongly electron-deficient core (5,7-dibromo-2,3-bis(2-ethylhexyl)benzo[1,2-b:4,5-c′]dithiophene-4,8-dione, TTDO), is developed through the design of cyclohexane-1,4-dione embedded into a thieno[3,4-b]thiophene (TT) unit. When blended with the acceptor Y6, the PBTT-F-based photovoltaic device exhibits an outstanding power conversion efficiency (PCE) of 16.1% with a very high fill factor (FF) of 77.1%. This polymer also shows high efficiency for a thick-film device, with a PCE of ≈14.2% being realized for an active layer thickness of 190 nm. In addition, the PBTT-F-based polymer solar cells also show good stability after storage for ≈700 h in a glove box, with a high PCE of ≈14.8%, which obviously shows that this kind of polymer is very promising for future commercial applications. This work provides a unique strategy for the molecular synthesis of donor polymers, and these results demonstrate that PBTT-F is a very promising donor polymer for use in polymer solar cells, providing an alternative choice for a variety of fullerene-free acceptor materials for the research community.  相似文献   

17.
有机太阳电池(OSCs)中,温和的界面材料制备工艺对于拓宽材料适用范围和提高器件能量转换效率(PCE)具有重要作用.本文提出了简便易行的In2O3和Ga2O3电子收集层的制备方法,即旋涂In(acac)3和Ga(acac)3异丙醇前驱体溶液并结合低温热退火.在基于PM6:Y6的OSCs中引入In2O3和Ga2O3电子收集层,得到了性能优异的器件, PCE分别达到16.17和16.01.对比研究发现, In2O3的功函数WF为4.58 eV,这比WF为5.06 eV的Ga2O3更有利于与ITO电极形成欧姆接触,因此基于前者的器件开路电压更高.此外,电化学阻抗谱EIS的研究进一步揭示了In2O3和Ga2O3对器件内部电荷转移过程的影响及其性能差异的由来:In2O3的串联电阻损耗虽然较低,但Ga2O3的复合电阻较高,所以一定程度上提高了基于Ga2O3的器件的填充因子,进而补偿了其串联电阻的损失.本论文的对比研究发现, In2O3和Ga2O3都是OSCs优异的电子收集层.  相似文献   

18.
The use of a ternary active layer offers a promising approach to enhance the power conversion efficiency (PCE) of polymer solar cells (PSCs) via simply incorporating a third component. Here, a ternary PSC with improved efficiency and stability facilitated by a new small molecule IBC‐F is demonstrated. Even though the PBDB‐T:IBC‐F‐based device gives an extremely low PCE of only 0.21%, a remarkable PCE of 15.06% can be realized in the ternary device based on PBDB‐T:IE4F‐S:IBC‐F with 20% IBC‐F, which is ≈10% greater than that (PCE = 13.70%) of the control binary device based on PBDB‐T:IE4F‐S. The improvement in the device performance of the ternary PSC is mainly attributed to the enhancement of fill factor, which is due to the improved charge dissociation and extraction, suppressed bimolecular and trap‐assisted recombination, longer charge‐carrier lifetime, and enhanced intermolecular interactions for preferential face‐on orientation. Additionally, the ternary device with 20% IBC‐F shows better thermal and photoinduced stability over the control binary device. This work provides a new angle to develop the third components for building ternary PSCs with enhanced photovoltaic performance and stability for practical applications.  相似文献   

19.
Liquid-crystal small molecule donor (LC-SMD) is a new type organic semiconductor, which is attractive not only for the easy synthesis and purification, well-defined chemical structures, etc., but also for the LC state that makes the crystallinity and aggregation state of molecules adjustable. Here, one new LC-SMD (a-BTR-H4) is synthesized with 1D alkoxyl and 2D thiophene-alkylthiol side-chained benzo[1,2-b:4,5-b′]dithiophene core, trithiophene π-bridge, and 3-(2-ethylhexyl) rhodanine end group. a-BTR-H4 shows low LC transition temperature, 117 °C, however, counterpart material (a-BTR-H5) with the same main structure but 3-ethyl rhodanine terminal group does not show LC properties. Although a-BTR-H4/H5 show similar Ultraviolet–visible absorption spectrum and energy levels, a-BTR-H4 affords relatively high photovoltaic performances due to favorable blend morphology produced by the consistent annealing temperature of Y6-based accepters and liquid crystal temperature of donors. Preliminary results indicate that a-BTR-H4 gains a power conversion efficiency (PCE) of 11.36% for Y6-based devices, which is ascribed to better light harvest as well as balanced carrier generation and transport, while a-BTR-H5 obtains 7.57% PCE. Therefore, some materials with unique nematic LC phase have great application potential in organic electronics, and further work to utilize a-BTR-H4 for high-performance device is underway.  相似文献   

20.
Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core–core and terminal–terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号