首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对还原性物质使驱油水解聚丙烯酰胺(HPAM)体系黏度损失严重的问题,利用室内物理模拟方法,定量和定性地分析了Fe~(2+)和Fe~(3+)对HPAM溶液零剪切黏度、动态黏弹性以及瞬时拉伸流变性能的影响,分析了2种铁离子影响HPAM溶液黏度的机理。结果表明:Fe~(2+)主要通过氧化还原反应以及水解的化学行为使HPAM分子链断裂,溶液黏度、流变性能大幅降低,同时,溶液中Fe~(2+)的存在,不仅会使HPAM溶液弹性模量和损耗模量都急剧下降,也使HPAM溶液拉丝直径变小,拉伸断裂时间缩短,最终使HPAM分子与分子间的链缠结机会减小,缠结程度减弱,分子变得易于流动。Fe~(3+)对HPAM溶液流变性能影响较小,其主要作用是使HPAM絮凝并沉淀。  相似文献   

2.
The surface‐active polymer (FPAM) was synthesized by free‐radical polymerization of acrylamide (AM), 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and N ‐dodecyl‐N ‐perfluoro octane sulfonyl acrylamide (AMPD), which was prior prepared by reacting dodecylamine, perfluoro‐1‐octanesulfonyl fluoride, and acryloyl chloride. Parameters affecting the intrinsic viscosity ([η]) and apparent viscosity (η) of FPAM, such as reaction temperature, AMPD concentration, AMPS concentration, monomer concentration, initiator concentration, and pH were examined. Apparent viscosity and interfacial tension (IFT) of FPAM solution were evaluated. Subsequently, temperature tolerance and shear tolerance were investigated by comparing with hydrolyzed polyacrylamide (HPAM), and results indicated that the FPAM displayed better performances than HPAM. FPAM can reduce the IFT between crude oil/water, and the IFT values are around at 2.91 and 3.9 mN m?1 corresponding to FPAM and HPAM/FC‐118. The sandpack model oil displacement experiment showed that water flooding can further increase the oil recovery to 15.01% (FPAM), compared with 9.26% oil recovery for HPAM, and 10.99% oil recovery for HPAM/FC‐118. The glass micromodel techniques for studying enhanced oil recovery get a good result and provide a useful reference for understanding the displacement behaviors in polymer flood process. It could be concluded that the introduction of fluorinated groups in the polymer chain was helpful in enhancing the oil displacement efficiency. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44672.  相似文献   

3.
The study of polymer aggregation behavior effect on shear resistance shed light on the synthesis of antishear polymer for oil displacement and enhances the application effect of polymer flooding. The effects of mechanical degradation on the properties of polymer solutions were studied by using partially hydrolyzed polyacrylamide (HPAM), hydrophobically modified HPAM (HMPAM), and dendritic hydrophobic associative polymers (DHAP), which are characterized by “granular,” “chain,” and “cluster” aggregation behavior, respectively. The results show that mechanical shearing can dramatically reduce the performance of polymer solution. The shearing resistance can be effectively enhanced by improving the polymer aggregation behavior. After being strongly sheared, hydrophobically associating polymers can still partially restore its network through hydrophobic association, therefore rebuild the solution viscosity. For DHAP, the broken molecular chains distribute more evenly in solution after shearing. In addition, the strength of reconstructed network structure of DHAP is better than that of HMAPM, which implies a better shear resistance. Furthermore, the hydrophobic association of linear polymers will increase their static adsorption on quartz sand. Meanwhile, DHAP with stronger spatial structure has less static adsorption, which is beneficial to maintain a higher polymer concentration in solution. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48670.  相似文献   

4.
The present work is concerned with experimental results of rheological characteristics of polyacrylamide (PAM) and of partially hydrolyzed polyacrylamide (HPAM) (degree of hydrolysis up to 80%) in aqueous and aqueous/sodium chloride solutions with changing experimental conditions such as polymer concentration, temperature, solvent quality, and shear rate applied. It has been observed that the all‐aqueous and aqueous/NaCl solution of PAM and of HPAM exhibited the non‐Newtonian behavior with shear‐thinning and shear‐thickening areas. The onset of shear‐thickening at depends mainly on the degree of HPAM hydrolysis, as well as on solution concentration, temperature, solvent quality, and polymer molecular weight. Rheological parameters from power law (Ostwald de Waele model) and activation energy of viscous flow (Ea) are determined and discussed. The changes in apparent shear viscosity during aging of solutions of PAM and HPAM are also described. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2235–2241, 2007  相似文献   

5.
The dependence of shear degradation of polymer solutions on capillary length at constant shear stress is investigated with solutions of poly(isobutylene) (Mvis=6,1 · 106) in toluene. We examined concentrations of 0.1, 0.25, 1 and 4% and found the degradation to increase with capillary length. In 0,1% solution we found a decreased efficiency of degradation, due to a change in the structure of solution. Flow instabilities, which appear above a critical shear rate D in polymer solutions and pretend a loss in viscosity, are not caused by shear degradation. This result supports our interpretation of unstable flow of polymer solutions as slip flow (spurt).  相似文献   

6.
The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer solution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects.To alleviate the matching problems between the layer permeability and the injected polymer molecular weight,a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle.In terms of four variables(polymer concentration,pore diameter,length of shear component and flow rate),the rheological behavior of hydrolyzed polyacrylamide(HPAM)solution flowing through the device was investigated in detail.The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam,and achieve the desired degree of shear degradation and the final rheological parameters—viscosity loss,viscoelasticity and pressure drop.Therefore,a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily.Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20%to 50%.In a word,the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.  相似文献   

7.
Blocking or reducing water production from oil wells is a serious problem in oil industry. Two types of polymers, namely, polyacrylamide (PAA) and polysaccharides (xanthan) have been investigated in this paper. The viscosity of both polymer solutions was first evaluated at different salinities, shear rates and concentrations. Afterwards, the solutions were injected into core samples to examine the adsorption on the rock surface by calculating the resistance factor as well as the residual resistance factor. Also, the effect of the injection rate of the polymer solutions has been studied. The results show that xanthan solution is tolerant of high salinity (20 %), while PAA solution is very sensitive to salt. Both polymer solutions show a pseudoplastic flow as a function of the shear rate. The core sample experiments show that both polymer solutions suffer a reduction in the adsorption rate with salinity increase. However, xanthan shows acceptable values even with a salinity up to 20 % and a temperature of 60 °C. Therefore, xanthan can be recommended to shut off water in high salinity and high temperature reservoirs. It was also found that the lower the injection rate the higher the adsorption on the rock surface.  相似文献   

8.
Capillary viscometers have been used extensively, because of their simplicity and reliability, to measure the viscosity of fluids over a wide range of shear rates. However, in capillary flow, the shear rate is not uniform throughout the capillary, a pressure gradient is established in the direction of flow, and the temperature of the fluid is nonuniform due to viscous dissipation. In the present work, a general, simple and practical method is proposed for correcting for the effects of pressure variation and viscous dissipation in determining the viscosity of polymer melts at high pressures. The method essentially involves the estimation of temperature, pressure, shear rate, and shear stress under a variety of experimental conditions at a predetermined point in the capillary. As such, it may be considered as a generalized extension of the classical Rabinowitsch-Mooney method for estimating true viscosity in capillary flow.  相似文献   

9.
Polymer flooding characteristics of partially hydrolyzed polyacrylamide (HPAM) solution with the addition of NaOH were examined in homogeneous glass‐bead packs. The heavy oil recovery in unconsolidated sandstone formations by applying the alkali‐polymer flooding was observed. Experimental results showed that HPAM solution was sensitive to temperature, salinity, and alkali, finding that alkali‐polymer solutions are more effective in improving viscosity than conventional polymer solutions. The solution of 0.5 wt % NaOH mixed with 1500 ppm HPAM (12 mol % hydrolysis degree) was found to be the optimal choice, which gives rise to the highest viscosity on the rheological characterization. Flood tests using the alkali‐polymer solution showed an increase in oil recovery by 30% over water‐flooding when the water‐cut reached 95%, indicating that alkali‐polymer could be more effective in improving sweep efficiency than polymer flood. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The rheological characteristics of copolymers of acrylamide (AM) with sodium salt of 2‐acrylamido‐2‐methylpropane sulfonic acid (PAMS), and of hydrolyzed polyacrylamide (HPAM) have been studied in both NaCl solutions and synthetic seawater. PAMS may possible have high salt tolerance and thereby find use in enhanced oil recovery processes for high salinity reservoirs. The viscosity and solubility effect of the PAMS copolymers have been systematically studied with variations in sulfonation degree and molecular weight. Emphasis has been studies as a function of shear rate, polymer concentration, NaCl and divalent ions concentration in aqueous phase. Shear rate dependence of PAMS varies with sulfonation degree, and PAMS with higher sulfonation degree is found to be less shear rate dependent. PAMS with high sulfonation degree are more salt tolerant also compared to HPAM. Also the effect of divalent ions on viscosity of PAMS is lower compared to HPAM. Two parameters will increase the solubility effect of the PAMS copolymers in mix brine, one is sulfonation degree and the other is in the presence of NaCl. Both parameters have a direct effect on the solubility of PAMS copolymer in mixed brine. In all cases the PAMS copolymers are more salt tolerant than HPAM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
罗锋  孙刚 《当代化工》2016,(4):661-664,692
以大庆萨南油田南二西和南三西区块为研究平台,首先通过研究由油田新鲜污水和曝氧污水配制的聚合物溶液的粘度稳定性受WDJ-1稳定剂的影响,分析了稳定剂的作用机理;随后,在60 cm长岩心上开展传输运移实验,研究了稳定剂对聚合物溶液在多孔介质里的流动性和传输性能的影响。实验结果表明,在大庆油田45℃低温油藏条件下,使用油田污水配制的聚合物溶液存在明显的化学降解作用;HPAM聚合物的热氧降解是因为自由基O·攻击聚合物造成聚合物链发生断裂,导致溶液粘度急剧降低;在新鲜污水和曝氧污水配制聚合物溶液中添加100~120 mg/L稳定剂,能明显提高聚合物粘度在油层条件下的长期稳定性,改善聚合物溶液在岩石多孔介质中的流动性和传输性能,进而确保污水聚合物驱具有较好的驱油效果。  相似文献   

12.
The viscosity and retention of several copolymers of acrylamide (AM) with sodium salt of 2‐acrylamido‐2‐methylpropane sulfonic acid (PAMS), and also hydrolyzed polyacrylamide (HPAM) have been studied under aerobic condition with and without the sacrificial agent, isobutyl alcohol (IBA) added at a temperature of 80°C. Parallel experiments have been performed in synthetic seawater (SSW) and 5 wt % NaCl. The viscosity at high temperature has been studied as a function of aging time, shear rate, sulfonation degree, molecular weight, and concentration of IBA. The retention in porous medium for sulfonated polyacrylamide polymers was measured in core floods using outcrop Berea sandstone. For the studied polymer sacrificial agent may protect polymer structure at high temperature. Higher sacrificial agent concentration gives better thermal stability in both 5 wt % NaCl and SSW solvents. Sulfonation degree also has a direct effect on thermal stability, i.e., higher sulfonation degree lead to better thermal stability in terms of viscosity. By increasing temperature, less relative reduction in polymer solution viscosity was observed for the polymer with lower molecular weight. The presence of divalent ions at high temperature leads to strong reduction of HPAM polymer solution viscosity, but the viscosity is better maintained for PAMS copolymer solution at high temperature. The precipitation of HPAM first occurred after 3 months at 80°C and for PAMS copolymer with lowest sulfonation degree precipitation started after 7 months. For the studied polymers the retention was found to be relatively independent of temperature and compared to HPAM a much lower retention is observed for the sulfonated copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Polymer flooding represents one of the most efficient processes to enhance oil recovery, but the poor thermostability and salt tolerance of the currently used water-soluble polymers impeded their use in high temperature and salinity oil reservoirs. Thermoviscosifying polymers (TVPs) whose viscosity increases upon increasing temperature and salinity may overcome the deficiencies of most water-soluble polymers. A novel TVP was studied in comparison with traditional partially hydrolyzed polyacrylamide (HPAM) in synthetic brine regarding their rheological behaviors and core flooding experiments under simulated high temperature and salinity oil reservoir conditions (T: 85 °C, and total salinity: 32,868 mg/L, [Ca2+] + [Mg2+]: 873 mg/L). It was found that with increasing temperature, both apparent viscosity and elastic modulus of the TVP polymer solution increase, while those of the HPAM solutions decrease. Such a difference is attributed to their microstructures formed in aqueous solution, which were observed by cryogenic transmission electron microscopy. Core flow tests at equal conditions showed an oil recovery factor of 13.5 % for the TVP solution versus only 2.1 % for the HPAM solution.  相似文献   

14.
Summary Effects of steady shear flows on intermolecular interactions in dilute and semidilute aqueous solutions of hyaluronic acid (HA) are reported. Pronounced shear thinning behavior is observed for solutions of HA at high shear rates, and no hysteresis effects are detected upon the subsequent return to low shear rates. With the aid of the asymmetric flow field-flow fractionation (AFFFF) technique, it is shown that mechanical degradation of the polymer does not take place in these shear viscosity experiments, even at high shear rates. The low shear rate viscosity of a semidilute HA solution decreases by approximately 40% when the temperature is increased from 10 °C to 45 °C. It is shown that when a dilute HA solution is exposed to a low fixed shear rate (0.001 s-1), a marked viscosification occurs in the course of time and prominent intermolecular complexes are formed. It is argued that shear-induced alignment and stretching of polymer chains promote the evolution of hydrogen-bonded structures, where cooperative zipping of stretched chains generates a network. At a higher constant shear rate (0.1 s-1), the viscosity decreases as time goes because of the alignment of the polymer chains, but the higher shear flow perturbation prevents the chains in dilute solutions from building up association complexes. The viscosity of an entangled HA solution is not changed in the considered time window at this shear rate, but the network structures breakdown at the highest shear rate (1000 s-1), and then they are restored upon return to a low shear rate.  相似文献   

15.
It is frequently necessary to measure the viscosity of polymer solutions at high shear rates to obtain data under the conditions encountered in industrial processes. Such measurements are most often made on a capillary viscometer. This paper presents a method of determining solution viscosities at shear rates up to 50,000 s?1 in a rotational rheometer using a parallel plate geometry. The two keys to performing these measurements are very small gaps between the parallel plates (on the order of 50 microns) to eliminate inertial secondary flows, and the ability to increase and decrease the shear rate quickly to minimize viscous heating. A technique for setting and measuring small gaps is presented. Possible sources of error including inertia, axial compliance, and viscous heating are analyzed. A comparison Is made between the viscosity of a 0.7 percent hydroxypropyl guar (HPG) solution measured on the parallel plate rheometer and the viscosity measured in a capillary viscometer. Viscosities of HPG solutions having concentrations of 0.25, 0.50, 1.00, and 1.45 percent are presented over the shear rate range 100 to 50,000 s?1.  相似文献   

16.
In view of the low recovery rate associated with water flooding, as well as the scaling problems caused by traditional alkali-surfactant-polymer flooding, the feasibility of using a betaine surfactant with high interfacial activity for chemical flooding of ordinary heavy oil was investigated. Aqueous solutions of oleic acid amide betaine (OAAB) with the mass concentration of 0.01% can reduce the oil–water interfacial tension to the ultralow level (10−3 mN m−1), making it suitable for chemical flooding. To solve the problem of high adsorption onto sandstone, static adsorption tests and dynamic adsorption tests were carried out. The results show that the weakly alkaline lignin can significantly reduce the adsorption quantity of OAAB by more than 40%, based on which, a compound-flooding system of 0.1% partially hydrolyzed polyacrylamide (HPAM) + 0.1% OAAB +0.75% lignin was constructed. Compared with water flooding, the ultimate rate was enhanced by 20.4%, resulting in a final recovery rate of 53.9%. The study of oil displacement mechanism shows that the excellent ability to reduce the oil–water interfacial tension of OAAB can emulsify heavy oil to small droplets easily, exhibiting better capacity in oil displacement efficiency. The polymer can increase the viscosity of the aqueous phase, reduce the mobility ratio of water to oil, weaken the fingering effect, and improve the sweep efficiency. Lignin can not only reduce the adsorption quantity of betaine surfactant, but also promote the adsorption of OAAB onto the oil–water interface, leading to enhance the emulsification performance of OAAB and maintain the oil displacement efficiency effectively. Therefore, the surfactant-polymer flooding system based on the betaine surfactant can be developed into an economically and technically feasible flooding technology suitable for ordinary heavy oil reservoirs.  相似文献   

17.
For polymers with long, complicated, branched chains, it is difficult to measure the real shear viscosity and slip velocity, using the capillary rheometer based on the adsorption–desorption mechanism. In this study, a double‐barrel capillary rheometer was used to investigate the viscosities of four polymers including polypropylene, high‐density polyethylene, polystyrene, and polymethylmethacrylate in a microchannel. A general model of polymer viscosity based on the entanglement–disentanglement was presented. The proposed model is important in understanding the mechanism of wall slip. This general model can be transferred to the other different models when changing the parameters. Actually, the entanglement–disentanglement model can also be transformed to the adsorption–desorption model. Using the model, it was found that the viscosities of polystyrene and polymethylmethacrylate were reduced with decreasing die diameter, and the slip velocities were increased with the increase of shear stress which agrees well with polymer microrheology based on the microscale effect. For polymers with long, complicated, branched chains, the proposed model improves the accuracy of the calculated viscosity and gains the real slip velocity when polymer melt flows through a microchannel. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
Polymer solution for oil displacement is mostly used in the middle and late stage of water flooding reservoir development, and reservoir groundwater conditions are often one of the main conditions restricting polymer application. Therefore, it is necessary to develop salt tolerance of polymer solutions with different aggregation behaviors, so as to facilitate the synthesis and optimization of suitable polymer systems. The differences in the micro-aggregation behavior of three polymers with different molecular structures were explored. On this basis, the effects of divalent metal cations on the properties of the polymer solutions were analyzed by assessing the micro-aggregation behavior, apparent viscosity, hydrodynamic size, and shear rheological characteristics. The results showed that the linear partially hydrolyzed polyacrylamide (HPAM) was seriously affected by divalent cations, and the viscosity decreased obviously. The aggregation behavior of the polymer changed by hydrophobic association can enhance the salt tolerance of the solution. The hydrophobically modified partially hydrolyzed polyacrylamide (HMPAM) with “chain beam” aggregation behavior has strong intermolecular connection, which enables it to withstand the content of calcium and magnesium ions of 1100 mg l−1. When the content of calcium and magnesium ions exceeds 600 mg l−1, dendritic hydrophobically associating polymer (DHAP) will destroy the interaction between molecular chains, resulting in the decrease of apparent viscosity and hydrodynamic size. For polymer flooding in high-salinity reservoir, salt tolerant polymer system can be constructed by optimizing molecular weight and hydrophobic group content.  相似文献   

19.
为了更好的揭示配聚污水对聚合物溶液粘度的影响规律,利用布氏粘度仪对不同污水配制聚合物溶液粘度进行测定。研究结果表明:聚合物溶液粘度随着金属阳离子浓度的增加而迅速下降后下降平缓。特别是Mg~(2+)、Ca~(2+)浓度对聚合物溶液粘度具有较大影响,较小浓度的提升就能引起HPAM溶液粘度的大幅度下降。选择Na_2C_2O_4作为提高HPAM溶液粘度的络合剂,质量浓度为1 500 mg/L的HPAM溶液增粘率达到增粘率达到33.2%。  相似文献   

20.
In polymer flooding, the residual polymer in the produced fluid can increase the stability of crude oil emulsion, thereby negatively affecting the demulsification process. Therefore, a polymer that has no effect on the stability of crude oil emulsion is required. Herein, a polymerizable monomer with a demulsification function (MD) was synthesized and then copolymerized with acrylamide, acrylic acid, and 2-acrylamide-2-methylpropane sulfonic acid to prepare a novel copolymer (self-demulsifying polymer, PDM). The dissolution time, solution viscosity, shear resistance, static adsorption on quartz sand, and the effect on the crude oil emulsion stability of PDM were compared with those of regular polyacrylamide (PAM). Experimental results showed that owing to the steric hindrance effect of MD, the molecular weight of PDM was lower than that of PAM. Both polymers exhibited satisfactory solubility, solution viscosity, shear resistance, and static adsorption, which can meet the requirements of polymer for use in oil displacement. However, in contrast to PAM, PDM had no negative effect on the crude oil emulsion stability. This study provides a new solution to the problem of increased crude oil emulsion stability in polymer flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号